17478
10522
sklearn.ensemble.forest.RandomForestClassifier
sklearn.RandomForestClassifier
sklearn.ensemble.forest.RandomForestClassifier
61
openml==0.10.2,sklearn==0.20.3
A random forest classifier.
A random forest is a meta estimator that fits a number of decision tree
classifiers on various sub-samples of the dataset and uses averaging to
improve the predictive accuracy and control over-fitting.
The sub-sample size is always the same as the original
input sample size but the samples are drawn with replacement if
`bootstrap=True` (default).
2019-12-30T14:19:37
English
sklearn==0.20.3
numpy>=1.6.1
scipy>=0.9
bootstrap
boolean
true
Whether bootstrap samples are used when building trees. If False, the
whole datset is used to build each tree
class_weight
dict
null
Weights associated with classes in the form ``{class_label: weight}``
If not given, all classes are supposed to have weight one. For
multi-output problems, a list of dicts can be provided in the same
order as the columns of y
Note that for multioutput (including multilabel) weights should be
defined for each class of every column in its own dict. For example,
for four-class multilabel classification weights should be
[{0: 1, 1: 1}, {0: 1, 1: 5}, {0: 1, 1: 1}, {0: 1, 1: 1}] instead of
[{1:1}, {2:5}, {3:1}, {4:1}]
The "balanced" mode uses the values of y to automatically adjust
weights inversely proportional to class frequencies in the input data
as ``n_samples / (n_classes * np.bincount(y))``
The "balanced_subsample" mode is the same as "balanced" except that
weights are computed based on the bootstrap sample for every tree
grown
For multi-output, the weights of each column of y will be multiplied
Note that these weights will be multiplied...
criterion
string
"gini"
The function to measure the quality of a split. Supported criteria are
"gini" for the Gini impurity and "entropy" for the information gain
Note: this parameter is tree-specific
max_depth
integer or None
null
The maximum depth of the tree. If None, then nodes are expanded until
all leaves are pure or until all leaves contain less than
min_samples_split samples
max_features
int
0.49342778081534433
The number of features to consider when looking for the best split:
- If int, then consider `max_features` features at each split
- If float, then `max_features` is a fraction and
`int(max_features * n_features)` features are considered at each
split
- If "auto", then `max_features=sqrt(n_features)`
- If "sqrt", then `max_features=sqrt(n_features)` (same as "auto")
- If "log2", then `max_features=log2(n_features)`
- If None, then `max_features=n_features`
Note: the search for a split does not stop until at least one
valid partition of the node samples is found, even if it requires to
effectively inspect more than ``max_features`` features
max_leaf_nodes
int or None
null
Grow trees with ``max_leaf_nodes`` in best-first fashion
Best nodes are defined as relative reduction in impurity
If None then unlimited number of leaf nodes
min_impurity_decrease
float
0.0
A node will be split if this split induces a decrease of the impurity
greater than or equal to this value
The weighted impurity decrease equation is the following::
N_t / N * (impurity - N_t_R / N_t * right_impurity
- N_t_L / N_t * left_impurity)
where ``N`` is the total number of samples, ``N_t`` is the number of
samples at the current node, ``N_t_L`` is the number of samples in the
left child, and ``N_t_R`` is the number of samples in the right child
``N``, ``N_t``, ``N_t_R`` and ``N_t_L`` all refer to the weighted sum,
if ``sample_weight`` is passed
.. versionadded:: 0.19
min_impurity_split
float
1e-07
Threshold for early stopping in tree growth. A node will split
if its impurity is above the threshold, otherwise it is a leaf
.. deprecated:: 0.19
``min_impurity_split`` has been deprecated in favor of
``min_impurity_decrease`` in 0.19. The default value of
``min_impurity_split`` will change from 1e-7 to 0 in 0.23 and it
will be removed in 0.25. Use ``min_impurity_decrease`` instead
min_samples_leaf
int
2
The minimum number of samples required to be at a leaf node
A split point at any depth will only be considered if it leaves at
least ``min_samples_leaf`` training samples in each of the left and
right branches. This may have the effect of smoothing the model,
especially in regression
- If int, then consider `min_samples_leaf` as the minimum number
- If float, then `min_samples_leaf` is a fraction and
`ceil(min_samples_leaf * n_samples)` are the minimum
number of samples for each node
.. versionchanged:: 0.18
Added float values for fractions
min_samples_split
int
15
The minimum number of samples required to split an internal node:
- If int, then consider `min_samples_split` as the minimum number
- If float, then `min_samples_split` is a fraction and
`ceil(min_samples_split * n_samples)` are the minimum
number of samples for each split
.. versionchanged:: 0.18
Added float values for fractions
min_weight_fraction_leaf
float
0.0
The minimum weighted fraction of the sum total of weights (of all
the input samples) required to be at a leaf node. Samples have
equal weight when sample_weight is not provided
n_estimators
integer
100
The number of trees in the forest
.. versionchanged:: 0.20
The default value of ``n_estimators`` will change from 10 in
version 0.20 to 100 in version 0.22
n_jobs
int or None
null
The number of jobs to run in parallel for both `fit` and `predict`
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
for more details
oob_score
bool
false
Whether to use out-of-bag samples to estimate
the generalization accuracy
random_state
int
null
If int, random_state is the seed used by the random number generator;
If RandomState instance, random_state is the random number generator;
If None, the random number generator is the RandomState instance used
by `np.random`
verbose
int
0
Controls the verbosity when fitting and predicting
warm_start
bool
false
When set to ``True``, reuse the solution of the previous call to fit
and add more estimators to the ensemble, otherwise, just fit a whole
new forest. See :term:`the Glossary <warm_start>`
openml-python
python
scikit-learn
sklearn
sklearn_0.20.3