{"flow":{"id":"17414","uploader":"1","name":"sklearn.ensemble.forest.ExtraTreesClassifier","custom_name":"sklearn.ExtraTreesClassifier","class_name":"sklearn.ensemble.forest.ExtraTreesClassifier","version":"13","external_version":"openml==0.10.2,sklearn==0.21.2","description":"An extra-trees classifier.\n\nThis class implements a meta estimator that fits a number of\nrandomized decision trees (a.k.a. extra-trees) on various sub-samples\nof the dataset and uses averaging to improve the predictive accuracy\nand control over-fitting.","upload_date":"2019-11-22T01:24:04","language":"English","dependencies":"sklearn==0.21.2\nnumpy>=1.6.1\nscipy>=0.9","parameter":[{"name":"bootstrap","data_type":"boolean","default_value":"false","description":"Whether bootstrap samples are used when building trees. If False, the\n whole datset is used to build each tree"},{"name":"class_weight","data_type":"dict","default_value":"null","description":"Weights associated with classes in the form ``{class_label: weight}``\n If not given, all classes are supposed to have weight one. For\n multi-output problems, a list of dicts can be provided in the same\n order as the columns of y\n\n Note that for multioutput (including multilabel) weights should be\n defined for each class of every column in its own dict. For example,\n for four-class multilabel classification weights should be\n [{0: 1, 1: 1}, {0: 1, 1: 5}, {0: 1, 1: 1}, {0: 1, 1: 1}] instead of\n [{1:1}, {2:5}, {3:1}, {4:1}]\n\n The \"balanced\" mode uses the values of y to automatically adjust\n weights inversely proportional to class frequencies in the input data\n as ``n_samples \/ (n_classes * np.bincount(y))``\n\n The \"balanced_subsample\" mode is the same as \"balanced\" except that weights are\n computed based on the bootstrap sample for every tree grown\n\n For multi-output, the weights of each column of y will be multiplied\n\n Note that these weights will be multiplied wit..."},{"name":"criterion","data_type":"string","default_value":"\"gini\"","description":"The function to measure the quality of a split. Supported criteria are\n \"gini\" for the Gini impurity and \"entropy\" for the information gain"},{"name":"max_depth","data_type":"integer or None","default_value":"null","description":"The maximum depth of the tree. If None, then nodes are expanded until\n all leaves are pure or until all leaves contain less than\n min_samples_split samples"},{"name":"max_features","data_type":"int","default_value":"\"auto\"","description":"The number of features to consider when looking for the best split:\n\n - If int, then consider `max_features` features at each split\n - If float, then `max_features` is a fraction and\n `int(max_features * n_features)` features are considered at each\n split\n - If \"auto\", then `max_features=sqrt(n_features)`\n - If \"sqrt\", then `max_features=sqrt(n_features)`\n - If \"log2\", then `max_features=log2(n_features)`\n - If None, then `max_features=n_features`\n\n Note: the search for a split does not stop until at least one\n valid partition of the node samples is found, even if it requires to\n effectively inspect more than ``max_features`` features"},{"name":"max_leaf_nodes","data_type":"int or None","default_value":"null","description":"Grow trees with ``max_leaf_nodes`` in best-first fashion\n Best nodes are defined as relative reduction in impurity\n If None then unlimited number of leaf nodes"},{"name":"min_impurity_decrease","data_type":"float","default_value":"0.0","description":"A node will be split if this split induces a decrease of the impurity\n greater than or equal to this value\n\n The weighted impurity decrease equation is the following::\n\n N_t \/ N * (impurity - N_t_R \/ N_t * right_impurity\n - N_t_L \/ N_t * left_impurity)\n\n where ``N`` is the total number of samples, ``N_t`` is the number of\n samples at the current node, ``N_t_L`` is the number of samples in the\n left child, and ``N_t_R`` is the number of samples in the right child\n\n ``N``, ``N_t``, ``N_t_R`` and ``N_t_L`` all refer to the weighted sum,\n if ``sample_weight`` is passed\n\n .. versionadded:: 0.19"},{"name":"min_impurity_split","data_type":"float","default_value":"null","description":"Threshold for early stopping in tree growth. A node will split\n if its impurity is above the threshold, otherwise it is a leaf\n\n .. deprecated:: 0.19\n ``min_impurity_split`` has been deprecated in favor of\n ``min_impurity_decrease`` in 0.19. The default value of\n ``min_impurity_split`` will change from 1e-7 to 0 in 0.23 and it\n will be removed in 0.25. Use ``min_impurity_decrease`` instead"},{"name":"min_samples_leaf","data_type":"int","default_value":"1","description":"The minimum number of samples required to be at a leaf node\n A split point at any depth will only be considered if it leaves at\n least ``min_samples_leaf`` training samples in each of the left and\n right branches. This may have the effect of smoothing the model,\n especially in regression\n\n - If int, then consider `min_samples_leaf` as the minimum number\n - If float, then `min_samples_leaf` is a fraction and\n `ceil(min_samples_leaf * n_samples)` are the minimum\n number of samples for each node\n\n .. versionchanged:: 0.18\n Added float values for fractions"},{"name":"min_samples_split","data_type":"int","default_value":"2","description":"The minimum number of samples required to split an internal node:\n\n - If int, then consider `min_samples_split` as the minimum number\n - If float, then `min_samples_split` is a fraction and\n `ceil(min_samples_split * n_samples)` are the minimum\n number of samples for each split\n\n .. versionchanged:: 0.18\n Added float values for fractions"},{"name":"min_weight_fraction_leaf","data_type":"float","default_value":"0.0","description":"The minimum weighted fraction of the sum total of weights (of all\n the input samples) required to be at a leaf node. Samples have\n equal weight when sample_weight is not provided"},{"name":"n_estimators","data_type":"integer","default_value":"\"warn\"","description":"The number of trees in the forest\n\n .. versionchanged:: 0.20\n The default value of ``n_estimators`` will change from 10 in\n version 0.20 to 100 in version 0.22"},{"name":"n_jobs","data_type":"int or None","default_value":"null","description":"The number of jobs to run in parallel for both `fit` and `predict`\n ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context\n ``-1`` means using all processors. See :term:`Glossary `\n for more details"},{"name":"oob_score","data_type":"bool","default_value":"false","description":"Whether to use out-of-bag samples to estimate\n the generalization accuracy"},{"name":"random_state","data_type":"int","default_value":"0","description":"If int, random_state is the seed used by the random number generator;\n If RandomState instance, random_state is the random number generator;\n If None, the random number generator is the RandomState instance used\n by `np.random`"},{"name":"verbose","data_type":"int","default_value":"0","description":"Controls the verbosity when fitting and predicting"},{"name":"warm_start","data_type":"bool","default_value":"false","description":"When set to ``True``, reuse the solution of the previous call to fit\n and add more estimators to the ensemble, otherwise, just fit a whole\n new forest. See :term:`the Glossary `"}],"tag":["openml-python","python","scikit-learn","sklearn","sklearn_0.21.2"]}}