{"run":{"run_id":"1001099","uploader":"1","uploader_name":"Jan van Rijn","task_id":"56211","task_type":"Subgroup Discovery","flow_id":"4221","flow_name":"SubgroupDiscovery(1)","setup_id":"8037","error":[],"setup_string":"{\"overall_ranking_loss\":\"0.0\",\"post_processing_count\":\"20\",\"search_depth\":\"2\",\"maximum_time\":\"1.0\",\"search_strategy_width\":\"16\",\"numeric_strategy\":\"bins\",\"numeric_operators\":\"≤, ≥<\\\/html>\",\"beta\":\"1.0\",\"minimum_coverage\":\"2\",\"nr_threads\":\"1\",\"search_strategy\":\"beam\",\"alpha\":\"0.5\",\"beam_seed\":\"\",\"use_nominal_sets\":\"false\",\"maximum_coverage_fraction\":\"1.0\",\"post_processing_do_autorun\":\"true\",\"nr_bins\":\"4\",\"maximum_subgroups\":\"100\"}","parameter_setting":[{"name":"search_depth","value":"2","component":"4221"},{"name":"minimum_coverage","value":"2","component":"4221"},{"name":"maximum_coverage_fraction","value":"1.0","component":"4221"},{"name":"maximum_subgroups","value":"100","component":"4221"},{"name":"maximum_time","value":"1.0","component":"4221"},{"name":"search_strategy","value":"beam","component":"4221"},{"name":"use_nominal_sets","value":"false","component":"4221"},{"name":"search_strategy_width","value":"16","component":"4221"},{"name":"numeric_operators","value":"≤, ≥<\/html>","component":"4221"},{"name":"numeric_strategy","value":"bins","component":"4221"},{"name":"nr_bins","value":"4","component":"4221"},{"name":"nr_threads","value":"1","component":"4221"},{"name":"alpha","value":"0.5","component":"4221"},{"name":"beta","value":"1.0","component":"4221"},{"name":"post_processing_do_autorun","value":"true","component":"4221"},{"name":"post_processing_count","value":"20","component":"4221"},{"name":"beam_seed","value":[],"component":"4221"},{"name":"overall_ranking_loss","value":"0.0","component":"4221"}],"tag":"Cortana","input_data":{"dataset":{"did":"1494","name":"qsar-biodeg","url":"https:\/\/www.openml.org\/data\/download\/1592286\/phpGUrE90"}},"output_data":{"file":[{"did":"-1","file_id":"2876718","name":"description","url":"https:\/\/www.openml.org\/data\/download\/2876718\/run5046912276312791840.xml"},{"did":"-1","file_id":"2876719","name":"subgroups","url":"https:\/\/www.openml.org\/data\/download\/2876719\/subgroups2585903668493415388.csv"}],"evaluation":[{"name":"cortana_quality","value":"0.5320241","array_data":"[0.5320241, 0.521624, 0.521624, 0.5173844, 0.5148045, 0.5131448, 0.5104604, 0.5049268, 0.5047379, 0.5031827, 0.5016878, 0.5011774, 0.500426, 0.4996946, 0.4943901, 0.4931041, 0.4925938, 0.4923325, 0.4918423, 0.4912154, 0.4903594, 0.4892423, 0.4888444, 0.4888444, 0.4886033, 0.4874982, 0.4862243, 0.4860877, 0.4824227, 0.4820369, 0.481619, 0.481181, 0.4810243, 0.4802085, 0.4800317, 0.478151, 0.4780264, 0.4776808, 0.4771383, 0.4771182, 0.4751852, 0.4746026, 0.474277, 0.4740801, 0.4737747, 0.4735577, 0.4735577, 0.4727942, 0.4723763, 0.4722196, 0.4717293, 0.4713234, 0.4707488, 0.4699531, 0.4691935, 0.4691413, 0.4689725, 0.4668226, 0.4666337, 0.4665091, 0.4665091, 0.4659546, 0.4658702, 0.4656411, 0.465621, 0.4642427, 0.4634068, 0.4628321, 0.4623097, 0.4622173, 0.4618838, 0.4616426, 0.4616105, 0.4608992, 0.4608389, 0.4600874, 0.4596896, 0.4592074, 0.4589582, 0.4588336, 0.4581545, 0.4580299, 0.4575919, 0.4566917, 0.4563703, 0.4562859, 0.4556067, 0.4551687, 0.454582, 0.4539872, 0.4537903, 0.4537903, 0.4537381, 0.4532157, 0.4526089, 0.4523798, 0.4523597, 0.4523597, 0.4523075, 0.4518373]"},{"name":"coverage","value":"449","array_data":"[449, 397, 397, 397, 464, 397, 470, 382, 474, 401, 568, 435, 397, 439, 419, 574, 441, 456, 403, 439, 407, 390, 494, 494, 589, 409, 401, 490, 457, 398, 422, 366, 375, 503, 432, 540, 466, 567, 517, 437, 548, 338, 519, 368, 629, 398, 398, 523, 547, 556, 503, 364, 397, 605, 324, 327, 499, 379, 471, 397, 397, 510, 596, 528, 448, 446, 494, 527, 557, 400, 338, 433, 516, 638, 398, 360, 464, 654, 506, 432, 471, 397, 341, 555, 330, 416, 455, 399, 595, 548, 397, 397, 400, 430, 546, 478, 398, 398, 401, 428]"},{"name":"positives","value":"277","array_data":"[277, 257, 257, 256, 278, 255, 279, 248, 279, 254, 310, 265, 252, 266, 258, 310, 265, 270, 252, 264, 253, 247, 282, 282, 314, 253, 250, 280, 268, 248, 256, 237, 240, 283, 259, 295, 270, 304, 287, 260, 297, 226, 287, 236, 324, 246, 246, 288, 296, 299, 281, 234, 245, 315, 220, 221, 279, 238, 269, 244, 244, 282, 311, 288, 261, 260, 276, 287, 297, 244, 223, 255, 283, 324, 243, 230, 265, 329, 279, 254, 267, 242, 223, 295, 219, 248, 261, 242, 308, 292, 241, 241, 242, 252, 291, 268, 241, 241, 242, 251]"},{"name":"probability","value":"0.6169265","array_data":"[0.6169265, 0.6473552, 0.6473552, 0.6448363, 0.5991379, 0.6423174, 0.593617, 0.6492147, 0.5886076, 0.6334165, 0.5457746, 0.6091954, 0.6347607, 0.6059226, 0.6157518, 0.5400697, 0.600907, 0.5921053, 0.6253102, 0.6013667, 0.6216216, 0.6333333, 0.5708502, 0.5708502, 0.533107, 0.6185819, 0.6234414, 0.5714286, 0.5864333, 0.6231156, 0.6066351, 0.647541, 0.64, 0.5626243, 0.599537, 0.5462963, 0.5793991, 0.5361552, 0.5551257, 0.5949657, 0.5419708, 0.6686391, 0.5529865, 0.6413043, 0.5151033, 0.6180905, 0.6180905, 0.5506692, 0.5411335, 0.5377698, 0.5586481, 0.6428571, 0.6171285, 0.5206612, 0.6790123, 0.675841, 0.5591182, 0.6279683, 0.5711253, 0.6146096, 0.6146096, 0.5529412, 0.5218121, 0.5454545, 0.5825893, 0.5829596, 0.5587045, 0.544592, 0.5332136, 0.61, 0.6597633, 0.5889145, 0.5484496, 0.507837, 0.6105528, 0.6388889, 0.5711207, 0.5030581, 0.5513834, 0.587963, 0.566879, 0.6095718, 0.6539589, 0.5315315, 0.6636364, 0.5961538, 0.5736264, 0.6065163, 0.5176471, 0.5328467, 0.6070529, 0.6070529, 0.605, 0.5860465, 0.532967, 0.5606695, 0.6055276, 0.6055276, 0.6034913, 0.5864486]"},{"name":"joint_entropy","value":"6.034738855404189"},{"name":"pattern_team_auroc10","value":"0.7845598045361755"}]}}}