{"run":{"run_id":"1155799","uploader":"1","uploader_name":"Jan van Rijn","task_id":"53887","task_type":"Subgroup Discovery","flow_id":"4221","flow_name":"SubgroupDiscovery(1)","setup_id":"8205","error":[],"setup_string":"{\"overall_ranking_loss\":\"0.0\",\"post_processing_count\":\"20\",\"search_depth\":\"2\",\"maximum_time\":\"1.0\",\"search_strategy_width\":\"1024\",\"numeric_strategy\":\"bins\",\"numeric_operators\":\"≤, ≥<\\\/html>\",\"beta\":\"1.0\",\"minimum_coverage\":\"2\",\"nr_threads\":\"1\",\"search_strategy\":\"beam\",\"alpha\":\"0.5\",\"beam_seed\":\"\",\"use_nominal_sets\":\"false\",\"maximum_coverage_fraction\":\"1.0\",\"post_processing_do_autorun\":\"true\",\"nr_bins\":\"256\",\"maximum_subgroups\":\"100\"}","parameter_setting":[{"name":"search_depth","value":"2","component":"4221"},{"name":"minimum_coverage","value":"2","component":"4221"},{"name":"maximum_coverage_fraction","value":"1.0","component":"4221"},{"name":"maximum_subgroups","value":"100","component":"4221"},{"name":"maximum_time","value":"1.0","component":"4221"},{"name":"search_strategy","value":"beam","component":"4221"},{"name":"use_nominal_sets","value":"false","component":"4221"},{"name":"search_strategy_width","value":"1024","component":"4221"},{"name":"numeric_operators","value":"≤, ≥<\/html>","component":"4221"},{"name":"numeric_strategy","value":"bins","component":"4221"},{"name":"nr_bins","value":"256","component":"4221"},{"name":"nr_threads","value":"1","component":"4221"},{"name":"alpha","value":"0.5","component":"4221"},{"name":"beta","value":"1.0","component":"4221"},{"name":"post_processing_do_autorun","value":"true","component":"4221"},{"name":"post_processing_count","value":"20","component":"4221"},{"name":"beam_seed","value":[],"component":"4221"},{"name":"overall_ranking_loss","value":"0.0","component":"4221"}],"tag":"Cortana","input_data":{"dataset":{"did":"300","name":"isolet","url":"https:\/\/www.openml.org\/data\/download\/52405\/phpB0xrNj"}},"output_data":{"file":[{"did":"-1","file_id":"3186233","name":"description","url":"https:\/\/www.openml.org\/data\/download\/3186233\/run9145798045556967742.xml"},{"did":"-1","file_id":"3186234","name":"subgroups","url":"https:\/\/www.openml.org\/data\/download\/3186234\/subgroups5772122235686128439.csv"}],"evaluation":[{"name":"cortana_quality","value":"0.964123","array_data":"[0.964123, 0.9638575, 0.9637228, 0.9634574, 0.9631893, 0.9627904, 0.9627891, 0.9625237, 0.9623889, 0.9622556, 0.9621235, 0.9619888, 0.9618567, 0.9618554, 0.96159, 0.96159, 0.9614552, 0.9613232, 0.9613219, 0.9611898, 0.9611898, 0.9609217, 0.9609217, 0.9607896, 0.9606563, 0.9605215, 0.9605215, 0.9603895, 0.9602574, 0.9602561, 0.9599907, 0.959988, 0.959988, 0.9598559, 0.9597252, 0.9597226, 0.9597226, 0.9595878, 0.9595878, 0.9594571, 0.9594571, 0.9594558, 0.9594558, 0.9593251, 0.9593224, 0.959057, 0.959057, 0.9590543, 0.9590543, 0.9589222, 0.9587915, 0.9587902, 0.9587889, 0.9586582, 0.9586568, 0.9586568, 0.9586568, 0.9586541, 0.9586541, 0.9585221, 0.9583914, 0.95839, 0.9583887, 0.958258, 0.9581233, 0.9581206, 0.9581206, 0.9579885, 0.9578578, 0.9578565, 0.9578552, 0.9578552, 0.9577245, 0.9577245, 0.9577231, 0.9575924, 0.9575871, 0.9575871, 0.9574577, 0.957455, 0.957455, 0.957455, 0.9573243, 0.9573243, 0.957323, 0.957323, 0.9571922, 0.9571909, 0.9571869, 0.9571869, 0.9570548, 0.9570548, 0.9570548, 0.9569241, 0.9569241, 0.9569228, 0.9567921, 0.9567907, 0.9567894, 0.9567894]"},{"name":"coverage","value":"491","array_data":"[491, 467, 494, 470, 498, 475, 501, 477, 504, 505, 480, 507, 482, 508, 484, 484, 511, 486, 512, 487, 487, 515, 515, 490, 491, 518, 518, 493, 468, 494, 470, 522, 522, 497, 446, 498, 498, 525, 525, 474, 474, 500, 500, 449, 501, 477, 477, 529, 529, 504, 453, 479, 505, 454, 480, 480, 480, 532, 532, 507, 456, 482, 508, 457, 484, 536, 536, 511, 460, 486, 512, 512, 461, 461, 487, 436, 540, 540, 463, 515, 515, 515, 464, 464, 490, 490, 439, 465, 543, 543, 518, 518, 518, 467, 467, 493, 442, 468, 494, 494]"},{"name":"positives","value":"297","array_data":"[297, 296, 297, 296, 297, 296, 297, 296, 297, 297, 296, 297, 296, 297, 296, 296, 297, 296, 297, 296, 296, 297, 297, 296, 296, 297, 297, 296, 295, 296, 295, 297, 297, 296, 294, 296, 296, 297, 297, 295, 295, 296, 296, 294, 296, 295, 295, 297, 297, 296, 294, 295, 296, 294, 295, 295, 295, 297, 297, 296, 294, 295, 296, 294, 295, 297, 297, 296, 294, 295, 296, 296, 294, 294, 295, 293, 297, 297, 294, 296, 296, 296, 294, 294, 295, 295, 293, 294, 297, 297, 296, 296, 296, 294, 294, 295, 293, 294, 295, 295]"},{"name":"probability","value":"0.604888","array_data":"[0.604888, 0.633833, 0.6012146, 0.6297872, 0.5963855, 0.6231579, 0.5928144, 0.6205451, 0.5892857, 0.5881188, 0.6166667, 0.5857988, 0.6141079, 0.5846457, 0.6115702, 0.6115702, 0.5812133, 0.6090535, 0.5800781, 0.6078029, 0.6078029, 0.576699, 0.576699, 0.6040816, 0.6028513, 0.5733591, 0.5733591, 0.6004057, 0.6303419, 0.5991903, 0.6276596, 0.5689655, 0.5689655, 0.5955734, 0.6591928, 0.5943775, 0.5943775, 0.5657143, 0.5657143, 0.6223629, 0.6223629, 0.592, 0.592, 0.6547884, 0.5908184, 0.6184486, 0.6184486, 0.5614367, 0.5614367, 0.5873016, 0.6490066, 0.6158664, 0.5861386, 0.6475771, 0.6145833, 0.6145833, 0.6145833, 0.5582707, 0.5582707, 0.5838264, 0.6447368, 0.6120332, 0.5826772, 0.643326, 0.6095041, 0.5541045, 0.5541045, 0.5792564, 0.6391304, 0.6069959, 0.578125, 0.578125, 0.637744, 0.637744, 0.6057495, 0.6720183, 0.55, 0.55, 0.6349892, 0.5747573, 0.5747573, 0.5747573, 0.6336207, 0.6336207, 0.6020408, 0.6020408, 0.667426, 0.6322581, 0.5469613, 0.5469613, 0.5714286, 0.5714286, 0.5714286, 0.6295503, 0.6295503, 0.5983773, 0.6628959, 0.6282051, 0.597166, 0.597166]"},{"name":"joint_entropy","value":"0.6781473089427583"},{"name":"pattern_team_auroc10","value":"0.984989551376106"}]}}}