{"run":{"run_id":"1191394","uploader":"1","uploader_name":"Jan van Rijn","task_id":"56211","task_type":"Subgroup Discovery","flow_id":"4221","flow_name":"SubgroupDiscovery(1)","setup_id":"8244","error":[],"setup_string":"{\"overall_ranking_loss\":\"0.0\",\"post_processing_count\":\"20\",\"search_depth\":\"3\",\"maximum_time\":\"1.0\",\"search_strategy_width\":\"1\",\"numeric_strategy\":\"best-bins\",\"numeric_operators\":\"≤, ≥<\\\/html>\",\"beta\":\"1.0\",\"minimum_coverage\":\"2\",\"nr_threads\":\"1\",\"search_strategy\":\"beam\",\"alpha\":\"0.5\",\"beam_seed\":\"\",\"use_nominal_sets\":\"false\",\"maximum_coverage_fraction\":\"1.0\",\"post_processing_do_autorun\":\"true\",\"nr_bins\":\"2\",\"maximum_subgroups\":\"100\"}","parameter_setting":[{"name":"search_depth","value":"3","component":"4221"},{"name":"minimum_coverage","value":"2","component":"4221"},{"name":"maximum_coverage_fraction","value":"1.0","component":"4221"},{"name":"maximum_subgroups","value":"100","component":"4221"},{"name":"maximum_time","value":"1.0","component":"4221"},{"name":"search_strategy","value":"beam","component":"4221"},{"name":"use_nominal_sets","value":"false","component":"4221"},{"name":"search_strategy_width","value":"1","component":"4221"},{"name":"numeric_operators","value":"≤, ≥<\/html>","component":"4221"},{"name":"numeric_strategy","value":"best-bins","component":"4221"},{"name":"nr_bins","value":"2","component":"4221"},{"name":"nr_threads","value":"1","component":"4221"},{"name":"alpha","value":"0.5","component":"4221"},{"name":"beta","value":"1.0","component":"4221"},{"name":"post_processing_do_autorun","value":"true","component":"4221"},{"name":"post_processing_count","value":"20","component":"4221"},{"name":"beam_seed","value":[],"component":"4221"},{"name":"overall_ranking_loss","value":"0.0","component":"4221"}],"tag":"Cortana","input_data":{"dataset":{"did":"1494","name":"qsar-biodeg","url":"https:\/\/www.openml.org\/data\/download\/1592286\/phpGUrE90"}},"output_data":{"file":[{"did":"-1","file_id":"3258922","name":"description","url":"https:\/\/www.openml.org\/data\/download\/3258922\/run5361569788381029623.xml"},{"did":"-1","file_id":"3258923","name":"subgroups","url":"https:\/\/www.openml.org\/data\/download\/3258923\/subgroups1478206625942510867.csv"}],"evaluation":[{"name":"cortana_quality","value":"0.5465915","array_data":"[0.5465915, 0.5323175, 0.5306979, 0.5205269, 0.5190963, 0.5190762, 0.5176135, 0.5172076, 0.5104604, 0.5093432, 0.5076514, 0.5049991, 0.5030581, 0.5009162, 0.4952581, 0.4903594, 0.4860877, 0.4851393, 0.4810243, 0.4771383, 0.4771182, 0.4756996, 0.474277, 0.4727942, 0.4668226, 0.4662278, 0.4659546, 0.4656411, 0.4628321, 0.4618838, 0.4616105, 0.4589582, 0.451765, 0.4419797, 0.4328535, 0.4279147, 0.4276856, 0.4274847, 0.4203838, 0.4121578, 0.4114264, 0.4090956, 0.4031763, 0.4009741, 0.3931298, 0.3921372, 0.3910643, 0.3902807, 0.3845381, 0.3802463, 0.3797761, 0.3788679, 0.3746283, 0.3746283, 0.3642483, 0.3637982, 0.3628177, 0.3604788, 0.3529078, 0.3517344, 0.3434682, 0.3432873, 0.3428413, 0.3421421, 0.3378141, 0.3363674, 0.3345188, 0.3342134, 0.323753, 0.3175604, 0.3132163, 0.3130154, 0.3124648, 0.3119424, 0.3034632, 0.3032542, 0.302555, 0.2983154, 0.2861391, 0.2860869, 0.2806779, 0.2784074, 0.2729501, 0.2725483, 0.2715999, 0.2709247, 0.2663677, 0.2605086, 0.2600023, 0.2582582, 0.2575268, 0.2563654, 0.2514145, 0.2441811, 0.2438998, 0.2395115, 0.2335801, 0.220592, 0.2182612, 0.2149539]"},{"name":"coverage","value":"424","array_data":"[424, 351, 444, 460, 461, 381, 465, 326, 470, 453, 469, 459, 327, 450, 288, 407, 490, 301, 375, 517, 437, 275, 519, 523, 379, 332, 510, 528, 527, 338, 516, 506, 351, 426, 382, 341, 273, 528, 530, 272, 314, 529, 382, 265, 472, 529, 266, 311, 235, 238, 265, 236, 236, 236, 264, 371, 265, 237, 266, 658, 240, 575, 276, 235, 727, 242, 267, 528, 236, 267, 273, 528, 235, 265, 265, 277, 236, 236, 286, 289, 275, 730, 313, 823, 634, 267, 691, 784, 245, 264, 306, 535, 657, 342, 277, 529, 545, 317, 532, 235]"},{"name":"positives","value":"272","array_data":"[272, 244, 275, 278, 278, 251, 279, 232, 279, 273, 278, 274, 229, 270, 214, 253, 280, 216, 240, 287, 260, 205, 287, 288, 238, 222, 282, 288, 287, 223, 283, 279, 225, 248, 231, 216, 193, 279, 278, 189, 203, 275, 224, 184, 252, 271, 182, 197, 170, 170, 179, 169, 168, 168, 175, 211, 175, 165, 173, 305, 162, 275, 174, 160, 325, 161, 169, 257, 156, 165, 166, 252, 153, 163, 161, 165, 151, 150, 164, 165, 159, 312, 170, 342, 278, 154, 296, 326, 144, 150, 164, 241, 281, 173, 151, 235, 239, 159, 231, 130]"},{"name":"probability","value":"0.6415094","array_data":"[0.6415094, 0.6951567, 0.6193694, 0.6043478, 0.6030369, 0.6587927, 0.6, 0.7116564, 0.593617, 0.602649, 0.5927505, 0.5969499, 0.7003058, 0.6, 0.7430556, 0.6216216, 0.5714286, 0.717608, 0.64, 0.5551257, 0.5949657, 0.7454545, 0.5529865, 0.5506692, 0.6279683, 0.6686747, 0.5529412, 0.5454545, 0.544592, 0.6597633, 0.5484496, 0.5513834, 0.6410256, 0.5821596, 0.604712, 0.6334311, 0.7069597, 0.5284091, 0.5245283, 0.6948529, 0.6464968, 0.5198488, 0.5863874, 0.6943396, 0.5338983, 0.5122873, 0.6842105, 0.6334405, 0.7234043, 0.7142857, 0.6754717, 0.7161017, 0.7118644, 0.7118644, 0.6628788, 0.5687332, 0.6603774, 0.6962025, 0.6503759, 0.4635258, 0.675, 0.4782609, 0.6304348, 0.6808511, 0.4470426, 0.6652893, 0.6329588, 0.4867424, 0.6610169, 0.6179775, 0.6080586, 0.4772727, 0.6510638, 0.6150943, 0.6075472, 0.5956679, 0.6398305, 0.6355932, 0.5734266, 0.5709343, 0.5781818, 0.4273973, 0.543131, 0.4155529, 0.4384858, 0.576779, 0.4283647, 0.4158163, 0.5877551, 0.5681818, 0.5359477, 0.4504673, 0.4277017, 0.505848, 0.5451264, 0.4442344, 0.4385321, 0.5015773, 0.4342105, 0.5531915]"},{"name":"joint_entropy","value":"7.419323558108003"},{"name":"pattern_team_auroc10","value":"0.7289928629985051"}]}}}