{"run":{"run_id":"1310986","uploader":"1","uploader_name":"Jan van Rijn","task_id":"54467","task_type":"Subgroup Discovery","flow_id":"4221","flow_name":"SubgroupDiscovery(1)","setup_id":"8377","error":[],"setup_string":"{\"overall_ranking_loss\":\"0.0\",\"post_processing_count\":\"20\",\"search_depth\":\"3\",\"maximum_time\":\"1.0\",\"search_strategy_width\":\"16\",\"numeric_strategy\":\"best-bins\",\"numeric_operators\":\"≤, ≥, =<\\\/html>\",\"beta\":\"1.0\",\"minimum_coverage\":\"2\",\"nr_threads\":\"1\",\"search_strategy\":\"beam\",\"alpha\":\"0.5\",\"beam_seed\":\"\",\"use_nominal_sets\":\"false\",\"maximum_coverage_fraction\":\"1.0\",\"post_processing_do_autorun\":\"true\",\"nr_bins\":\"256\",\"maximum_subgroups\":\"100\"}","parameter_setting":[{"name":"search_depth","value":"3","component":"4221"},{"name":"minimum_coverage","value":"2","component":"4221"},{"name":"maximum_coverage_fraction","value":"1.0","component":"4221"},{"name":"maximum_subgroups","value":"100","component":"4221"},{"name":"maximum_time","value":"1.0","component":"4221"},{"name":"search_strategy","value":"beam","component":"4221"},{"name":"use_nominal_sets","value":"false","component":"4221"},{"name":"search_strategy_width","value":"16","component":"4221"},{"name":"numeric_operators","value":"≤, ≥, =<\/html>","component":"4221"},{"name":"numeric_strategy","value":"best-bins","component":"4221"},{"name":"nr_bins","value":"256","component":"4221"},{"name":"nr_threads","value":"1","component":"4221"},{"name":"alpha","value":"0.5","component":"4221"},{"name":"beta","value":"1.0","component":"4221"},{"name":"post_processing_do_autorun","value":"true","component":"4221"},{"name":"post_processing_count","value":"20","component":"4221"},{"name":"beam_seed","value":[],"component":"4221"},{"name":"overall_ranking_loss","value":"0.0","component":"4221"}],"tag":"Cortana","input_data":{"dataset":{"did":"470","name":"profb","url":"https:\/\/www.openml.org\/data\/download\/52582\/profb.arff"}},"output_data":{"file":[{"did":"-1","file_id":"3506592","name":"description","url":"https:\/\/www.openml.org\/data\/download\/3506592\/run3725492824005983958.xml"},{"did":"-1","file_id":"3506593","name":"subgroups","url":"https:\/\/www.openml.org\/data\/download\/3506593\/subgroups684001583405719398.csv"}],"evaluation":[{"name":"cortana_quality","value":"0.2901786","array_data":"[0.2901786, 0.2879464, 0.2857143, 0.2857143, 0.2834821, 0.2834821, 0.28125, 0.28125, 0.2790179, 0.2790179, 0.2767857, 0.2767857, 0.2767857, 0.2767857, 0.2745536, 0.2745536, 0.2723214, 0.2723214, 0.2700893, 0.2678571, 0.2678571, 0.2678571, 0.2678571, 0.2678571, 0.265625, 0.265625, 0.265625, 0.2633929, 0.2633929, 0.2611607, 0.2611607, 0.2611607, 0.2611607, 0.2611607, 0.2589286, 0.2589286, 0.2589286, 0.2589286, 0.2566964, 0.2566964, 0.2566964, 0.2544643, 0.25, 0.25, 0.25, 0.2477679, 0.2477679, 0.2477679, 0.2477679, 0.2455357, 0.2455357, 0.2433036, 0.2433036, 0.2433036, 0.2433036, 0.2433036, 0.2433036, 0.2388393, 0.2388393, 0.2388393, 0.2366071, 0.234375, 0.234375, 0.234375, 0.234375, 0.2321429, 0.2299107, 0.2276786, 0.2276786, 0.2254464, 0.2254464, 0.2254464, 0.2254464, 0.2232143, 0.2209821, 0.2209821, 0.2209821, 0.21875, 0.2165179, 0.2142857, 0.2142857, 0.2120536, 0.2120536, 0.2098214, 0.2098214, 0.2098214, 0.2075893, 0.2075893, 0.2075893, 0.203125, 0.203125, 0.203125, 0.2008929, 0.2008929, 0.1986607, 0.1986607, 0.1986607, 0.1964286, 0.1941964, 0.1919643]"},{"name":"coverage","value":"317","array_data":"[317, 300, 322, 250, 323, 305, 306, 306, 307, 235, 302, 290, 257, 254, 327, 306, 328, 289, 260, 333, 318, 312, 294, 261, 334, 331, 310, 311, 245, 318, 318, 315, 303, 297, 316, 316, 280, 259, 317, 287, 248, 315, 320, 308, 239, 321, 306, 303, 252, 313, 307, 314, 308, 305, 299, 263, 251, 304, 292, 244, 293, 297, 267, 264, 258, 268, 272, 273, 261, 301, 295, 211, 139, 263, 288, 261, 261, 235, 137, 147, 147, 292, 148, 215, 215, 167, 213, 201, 138, 251, 209, 137, 219, 219, 292, 208, 142, 191, 183, 166]"},{"name":"positives","value":"149","array_data":"[149, 143, 150, 126, 150, 144, 144, 144, 144, 120, 142, 138, 127, 126, 150, 143, 150, 137, 127, 151, 146, 144, 138, 127, 151, 150, 143, 143, 121, 145, 145, 144, 140, 138, 144, 144, 132, 125, 144, 134, 121, 143, 144, 140, 117, 144, 139, 138, 121, 141, 139, 141, 139, 138, 136, 124, 120, 137, 133, 117, 133, 134, 124, 123, 121, 124, 125, 125, 121, 134, 132, 104, 80, 121, 129, 120, 120, 111, 78, 81, 81, 129, 81, 103, 103, 87, 102, 98, 77, 114, 100, 76, 103, 103, 127, 99, 77, 93, 90, 84]"},{"name":"probability","value":"0.4700315","array_data":"[0.4700315, 0.4766667, 0.4658385, 0.504, 0.4643963, 0.4721311, 0.4705882, 0.4705882, 0.4690554, 0.5106383, 0.4701987, 0.4758621, 0.4941634, 0.496063, 0.4587156, 0.4673203, 0.4573171, 0.4740484, 0.4884615, 0.4534535, 0.4591195, 0.4615385, 0.4693878, 0.48659, 0.4520958, 0.4531722, 0.4612903, 0.4598071, 0.4938776, 0.4559748, 0.4559748, 0.4571429, 0.4620462, 0.4646465, 0.4556962, 0.4556962, 0.4714286, 0.4826255, 0.4542587, 0.466899, 0.4879032, 0.4539683, 0.45, 0.4545455, 0.4895397, 0.4485981, 0.4542484, 0.4554455, 0.4801587, 0.4504792, 0.4527687, 0.4490446, 0.4512987, 0.452459, 0.4548495, 0.4714829, 0.4780876, 0.4506579, 0.4554795, 0.4795082, 0.4539249, 0.4511785, 0.4644195, 0.4659091, 0.4689922, 0.4626866, 0.4595588, 0.4578755, 0.4636015, 0.4451827, 0.4474576, 0.492891, 0.5755396, 0.460076, 0.4479167, 0.4597701, 0.4597701, 0.4723404, 0.5693431, 0.5510204, 0.5510204, 0.4417808, 0.5472973, 0.4790698, 0.4790698, 0.5209581, 0.4788732, 0.4875622, 0.557971, 0.4541833, 0.4784689, 0.5547445, 0.4703196, 0.4703196, 0.4349315, 0.4759615, 0.5422535, 0.486911, 0.4918033, 0.5060241]"},{"name":"joint_entropy","value":"4.831110561354798"},{"name":"pattern_team_auroc10","value":"0.6544662786989797"}]}}}