{"run":{"run_id":"1338521","uploader":"1","uploader_name":"Jan van Rijn","task_id":"56423","task_type":"Subgroup Discovery","flow_id":"4221","flow_name":"SubgroupDiscovery(1)","setup_id":"8407","error":[],"setup_string":"{\"overall_ranking_loss\":\"0.0\",\"post_processing_count\":\"20\",\"search_depth\":\"3\",\"maximum_time\":\"1.0\",\"search_strategy_width\":\"64\",\"numeric_strategy\":\"best-bins\",\"numeric_operators\":\"≤, ≥<\\\/html>\",\"beta\":\"1.0\",\"minimum_coverage\":\"2\",\"nr_threads\":\"1\",\"search_strategy\":\"beam\",\"alpha\":\"0.5\",\"beam_seed\":\"\",\"use_nominal_sets\":\"false\",\"maximum_coverage_fraction\":\"1.0\",\"post_processing_do_autorun\":\"true\",\"nr_bins\":\"4\",\"maximum_subgroups\":\"100\"}","parameter_setting":[{"name":"search_depth","value":"3","component":"4221"},{"name":"minimum_coverage","value":"2","component":"4221"},{"name":"maximum_coverage_fraction","value":"1.0","component":"4221"},{"name":"maximum_subgroups","value":"100","component":"4221"},{"name":"maximum_time","value":"1.0","component":"4221"},{"name":"search_strategy","value":"beam","component":"4221"},{"name":"use_nominal_sets","value":"false","component":"4221"},{"name":"search_strategy_width","value":"64","component":"4221"},{"name":"numeric_operators","value":"≤, ≥<\/html>","component":"4221"},{"name":"numeric_strategy","value":"best-bins","component":"4221"},{"name":"nr_bins","value":"4","component":"4221"},{"name":"nr_threads","value":"1","component":"4221"},{"name":"alpha","value":"0.5","component":"4221"},{"name":"beta","value":"1.0","component":"4221"},{"name":"post_processing_do_autorun","value":"true","component":"4221"},{"name":"post_processing_count","value":"20","component":"4221"},{"name":"beam_seed","value":[],"component":"4221"},{"name":"overall_ranking_loss","value":"0.0","component":"4221"}],"tag":"Cortana","input_data":{"dataset":{"did":"1466","name":"cardiotocography","url":"https:\/\/www.openml.org\/data\/download\/1586231\/php9HX2u8"}},"output_data":{"file":[{"did":"-1","file_id":"3563797","name":"description","url":"https:\/\/www.openml.org\/data\/download\/3563797\/run276835244833558368.xml"},{"did":"-1","file_id":"3563798","name":"subgroups","url":"https:\/\/www.openml.org\/data\/download\/3563798\/subgroups6383129268415905086.csv"}],"evaluation":[{"name":"cortana_quality","value":"0.9960318","array_data":"[0.9960318, 0.9960318, 0.9920635, 0.9920635, 0.9880952, 0.9880952, 0.9880952, 0.984127, 0.984127, 0.9801587, 0.968254, 0.968254, 0.968254, 0.9642857, 0.9642857, 0.9484127, 0.9484127, 0.9444444, 0.9444444, 0.9444444, 0.9404762, 0.9365079, 0.931104, 0.9289314, 0.9246032, 0.9229642, 0.9166667, 0.9126984, 0.9087301, 0.9047619, 0.9047619, 0.9047619, 0.9007937, 0.900116, 0.8993876, 0.8968254, 0.8838068, 0.8827396, 0.8826125, 0.8824389, 0.8802451, 0.8792076, 0.8767809, 0.8766369, 0.8723001, 0.8723001, 0.8722705, 0.8716013, 0.8690984, 0.866731, 0.8664388, 0.8650793, 0.8649057, 0.8634319, 0.862568, 0.8624621, 0.8611111, 0.8596289, 0.8594933, 0.8589597, 0.8573292, 0.8571429, 0.8521582, 0.8520904, 0.8519337, 0.8492063, 0.8486558, 0.8476648, 0.8464535, 0.8445308, 0.8436881, 0.8418839, 0.8412699, 0.8408167, 0.8404863, 0.840389, 0.8397495, 0.8380512, 0.8379157, 0.8373016, 0.8355864, 0.8352857, 0.835218, 0.8344133, 0.8341507, 0.833346, 0.8322788, 0.8317452, 0.8298817, 0.8293651, 0.8290771, 0.8290771, 0.8284461, 0.8281158, 0.826409, 0.8259432, 0.8253968, 0.8250411, 0.8244778, 0.8237409]"},{"name":"coverage","value":"251","array_data":"[251, 251, 250, 250, 249, 249, 249, 248, 248, 247, 244, 244, 244, 243, 243, 239, 239, 238, 238, 238, 237, 236, 263, 343, 233, 312, 231, 230, 229, 228, 228, 228, 227, 397, 314, 226, 436, 438, 337, 447, 333, 394, 272, 441, 466, 466, 407, 442, 472, 468, 342, 218, 328, 432, 383, 476, 217, 456, 490, 491, 435, 216, 470, 487, 327, 214, 485, 335, 506, 324, 469, 523, 212, 525, 475, 433, 527, 488, 522, 211, 442, 451, 468, 537, 470, 539, 541, 542, 478, 209, 547, 547, 506, 456, 552, 536, 208, 563, 505, 557]"},{"name":"positives","value":"251","array_data":"[251, 251, 250, 250, 249, 249, 249, 248, 248, 247, 244, 244, 244, 243, 243, 239, 239, 238, 238, 238, 237, 236, 238, 247, 233, 242, 231, 230, 229, 228, 228, 228, 227, 247, 237, 226, 248, 248, 236, 249, 235, 242, 227, 247, 249, 249, 242, 246, 249, 248, 233, 218, 231, 243, 237, 248, 217, 245, 249, 249, 242, 216, 245, 247, 228, 214, 246, 228, 248, 226, 243, 249, 212, 249, 243, 238, 249, 244, 248, 211, 238, 239, 241, 249, 241, 249, 249, 249, 241, 209, 249, 249, 244, 238, 249, 247, 208, 250, 243, 249]"},{"name":"probability","value":"1","array_data":"[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.904943, 0.7201166, 1.0, 0.775641, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.6221662, 0.7547771, 1.0, 0.5688073, 0.56621, 0.7002967, 0.557047, 0.7057057, 0.6142132, 0.8345588, 0.5600907, 0.5343348, 0.5343348, 0.5945946, 0.5565611, 0.5275424, 0.5299145, 0.6812865, 1.0, 0.7042683, 0.5625, 0.618799, 0.5210084, 1.0, 0.5372807, 0.5081633, 0.5071283, 0.5563218, 1.0, 0.5212766, 0.5071869, 0.6972477, 1.0, 0.5072165, 0.680597, 0.4901186, 0.6975309, 0.5181237, 0.4760994, 1.0, 0.4742857, 0.5115789, 0.5496536, 0.4724858, 0.5, 0.4750958, 1.0, 0.5384615, 0.5299335, 0.5149573, 0.4636872, 0.512766, 0.4619666, 0.4602588, 0.4594096, 0.5041841, 1.0, 0.4552102, 0.4552102, 0.4822134, 0.5219298, 0.451087, 0.4608209, 1.0, 0.4440497, 0.4811881, 0.4470377]"},{"name":"joint_entropy","value":"3.9091005715599825"},{"name":"pattern_team_auroc10","value":"0.9621258321898664"}]}}}