{"run":{"run_id":"1771324","uploader":"1","uploader_name":"Jan van Rijn","task_id":"53919","task_type":"Subgroup Discovery","flow_id":"4221","flow_name":"SubgroupDiscovery(1)","setup_id":"8850","error":[],"setup_string":"{\"overall_ranking_loss\":\"0.0\",\"post_processing_count\":\"20\",\"search_depth\":\"4\",\"maximum_time\":\"1.0\",\"search_strategy_width\":\"1024\",\"numeric_strategy\":\"bins\",\"numeric_operators\":\"≤, ≥<\\\/html>\",\"beta\":\"1.0\",\"minimum_coverage\":\"2\",\"nr_threads\":\"1\",\"search_strategy\":\"beam\",\"alpha\":\"0.5\",\"beam_seed\":\"\",\"use_nominal_sets\":\"false\",\"maximum_coverage_fraction\":\"1.0\",\"post_processing_do_autorun\":\"true\",\"nr_bins\":\"32\",\"maximum_subgroups\":\"100\"}","parameter_setting":[{"name":"search_depth","value":"4","component":"4221"},{"name":"minimum_coverage","value":"2","component":"4221"},{"name":"maximum_coverage_fraction","value":"1.0","component":"4221"},{"name":"maximum_subgroups","value":"100","component":"4221"},{"name":"maximum_time","value":"1.0","component":"4221"},{"name":"search_strategy","value":"beam","component":"4221"},{"name":"use_nominal_sets","value":"false","component":"4221"},{"name":"search_strategy_width","value":"1024","component":"4221"},{"name":"numeric_operators","value":"≤, ≥<\/html>","component":"4221"},{"name":"numeric_strategy","value":"bins","component":"4221"},{"name":"nr_bins","value":"32","component":"4221"},{"name":"nr_threads","value":"1","component":"4221"},{"name":"alpha","value":"0.5","component":"4221"},{"name":"beta","value":"1.0","component":"4221"},{"name":"post_processing_do_autorun","value":"true","component":"4221"},{"name":"post_processing_count","value":"20","component":"4221"},{"name":"beam_seed","value":[],"component":"4221"},{"name":"overall_ranking_loss","value":"0.0","component":"4221"}],"tag":"Cortana","input_data":{"dataset":{"did":"300","name":"isolet","url":"https:\/\/www.openml.org\/data\/download\/52405\/phpB0xrNj"}},"output_data":{"file":[{"did":"-1","file_id":"4453757","name":"description","url":"https:\/\/www.openml.org\/data\/download\/4453757\/run3459805193734299026.xml"},{"did":"-1","file_id":"4453758","name":"subgroups","url":"https:\/\/www.openml.org\/data\/download\/4453758\/subgroups1032470206876409281.csv"}],"evaluation":[{"name":"cortana_quality","value":"0.8826451","array_data":"[0.8826451, 0.8822489, 0.8811792, 0.8801187, 0.879976, 0.879976, 0.8794411, 0.8794411, 0.8789155, 0.8787729, 0.8787729, 0.878238, 0.8778551, 0.8778484, 0.877579, 0.877579, 0.8775697, 0.8773109, 0.8767747, 0.8765092, 0.8765092, 0.8765, 0.8763666, 0.8763666, 0.8762478, 0.8762372, 0.8757116, 0.8754488, 0.8754488, 0.8753061, 0.8753061, 0.8746378, 0.8746378, 0.8745151, 0.8742457, 0.8739656, 0.8738442, 0.8738402, 0.8738362, 0.8738322, 0.8735747, 0.873308, 0.873308, 0.8731853, 0.8731626, 0.8730425, 0.8730332, 0.8728998, 0.8727704, 0.872637, 0.8725077, 0.8725037, 0.872501, 0.8723703, 0.8723676, 0.8722449, 0.8722449, 0.8722449, 0.8721115, 0.8721115, 0.8719821, 0.8718327, 0.8716967, 0.8713045, 0.8713045, 0.8711711, 0.8710404, 0.8710404, 0.8710364, 0.8707817, 0.8706362, 0.8706362, 0.8705029, 0.8704989, 0.8702361, 0.8702307, 0.8701, 0.8701, 0.8699747, 0.8699653, 0.8699653, 0.8698252, 0.8696959, 0.8696959, 0.8695759, 0.8695665, 0.8694518, 0.8694331, 0.8693037, 0.8691703, 0.8691703, 0.8691677, 0.8691677, 0.869037, 0.8690343, 0.8689009, 0.8688942, 0.8687782, 0.8687782, 0.8687782]"},{"name":"coverage","value":"686","array_data":"[686, 611, 671, 549, 732, 732, 762, 762, 610, 793, 793, 823, 488, 618, 672, 672, 854, 700, 756, 732, 732, 914, 915, 915, 630, 838, 686, 610, 610, 793, 793, 824, 824, 617, 671, 933, 700, 778, 856, 934, 754, 756, 756, 549, 991, 732, 914, 915, 838, 839, 762, 840, 892, 841, 893, 686, 686, 686, 687, 687, 610, 923, 976, 823, 823, 824, 773, 773, 851, 619, 854, 854, 855, 933, 857, 961, 910, 910, 755, 937, 937, 1068, 991, 991, 732, 914, 551, 915, 838, 839, 839, 891, 891, 840, 892, 893, 1023, 686, 686, 686]"},{"name":"positives","value":"281","array_data":"[281, 278, 280, 275, 282, 282, 283, 283, 277, 284, 284, 285, 272, 277, 279, 279, 286, 280, 282, 281, 281, 288, 288, 288, 277, 285, 279, 276, 276, 283, 283, 284, 284, 276, 278, 288, 279, 282, 285, 288, 281, 281, 281, 273, 290, 280, 287, 287, 284, 284, 281, 284, 286, 284, 286, 278, 278, 278, 278, 278, 275, 287, 289, 283, 283, 283, 281, 281, 284, 275, 284, 284, 284, 287, 284, 288, 286, 286, 280, 287, 287, 292, 289, 289, 279, 286, 272, 286, 283, 283, 283, 285, 285, 283, 285, 285, 290, 277, 277, 277]"},{"name":"probability","value":"0.409621","array_data":"[0.409621, 0.4549918, 0.4172876, 0.5009107, 0.3852459, 0.3852459, 0.3713911, 0.3713911, 0.4540984, 0.3581337, 0.3581337, 0.346294, 0.557377, 0.4482201, 0.4151786, 0.4151786, 0.3348946, 0.4, 0.3730159, 0.3838798, 0.3838798, 0.3150985, 0.3147541, 0.3147541, 0.4396825, 0.3400955, 0.4067055, 0.452459, 0.452459, 0.3568726, 0.3568726, 0.3446602, 0.3446602, 0.4473258, 0.414307, 0.3086817, 0.3985714, 0.3624679, 0.3329439, 0.3083512, 0.372679, 0.3716931, 0.3716931, 0.4972678, 0.2926337, 0.3825137, 0.3140044, 0.3136612, 0.3389021, 0.3384982, 0.3687664, 0.3380952, 0.3206278, 0.3376932, 0.3202688, 0.4052478, 0.4052478, 0.4052478, 0.4046579, 0.4046579, 0.4508197, 0.3109426, 0.2961066, 0.3438639, 0.3438639, 0.3434466, 0.3635188, 0.3635188, 0.333725, 0.4442649, 0.3325527, 0.3325527, 0.3321637, 0.3076099, 0.3313886, 0.2996878, 0.3142857, 0.3142857, 0.3708609, 0.3062967, 0.3062967, 0.2734082, 0.2916246, 0.2916246, 0.3811475, 0.3129103, 0.4936479, 0.3125683, 0.3377088, 0.3373063, 0.3373063, 0.3198653, 0.3198653, 0.3369048, 0.3195067, 0.3191489, 0.28348, 0.4037901, 0.4037901, 0.4037901]"},{"name":"joint_entropy","value":"2.9044748069809003"},{"name":"pattern_team_auroc10","value":"0.9477462095949492"}]}}}