{"run":{"run_id":"617016","uploader":"1","uploader_name":"Jan van Rijn","task_id":"55135","task_type":"Subgroup Discovery","flow_id":"4221","flow_name":"SubgroupDiscovery(1)","setup_id":"7613","error":[],"setup_string":"{\"overall_ranking_loss\":\"0.0\",\"post_processing_count\":\"20\",\"search_depth\":\"1\",\"maximum_time\":\"1.0\",\"search_strategy_width\":\"1\",\"numeric_strategy\":\"all\",\"numeric_operators\":\"≤, ≥<\\\/html>\",\"beta\":\"1.0\",\"minimum_coverage\":\"2\",\"nr_threads\":\"1\",\"search_strategy\":\"beam\",\"alpha\":\"0.5\",\"beam_seed\":\"\",\"use_nominal_sets\":\"false\",\"maximum_coverage_fraction\":\"1.0\",\"post_processing_do_autorun\":\"true\",\"nr_bins\":\"8\",\"maximum_subgroups\":\"100\"}","parameter_setting":[{"name":"search_depth","value":"1","component":"4221"},{"name":"minimum_coverage","value":"2","component":"4221"},{"name":"maximum_coverage_fraction","value":"1.0","component":"4221"},{"name":"maximum_subgroups","value":"100","component":"4221"},{"name":"maximum_time","value":"1.0","component":"4221"},{"name":"search_strategy","value":"beam","component":"4221"},{"name":"use_nominal_sets","value":"false","component":"4221"},{"name":"search_strategy_width","value":"1","component":"4221"},{"name":"numeric_operators","value":"≤, ≥<\/html>","component":"4221"},{"name":"numeric_strategy","value":"all","component":"4221"},{"name":"nr_bins","value":"8","component":"4221"},{"name":"nr_threads","value":"1","component":"4221"},{"name":"alpha","value":"0.5","component":"4221"},{"name":"beta","value":"1.0","component":"4221"},{"name":"post_processing_do_autorun","value":"true","component":"4221"},{"name":"post_processing_count","value":"20","component":"4221"},{"name":"beam_seed","value":[],"component":"4221"},{"name":"overall_ranking_loss","value":"0.0","component":"4221"}],"tag":"Cortana","input_data":{"dataset":{"did":"1491","name":"one-hundred-plants-margin","url":"https:\/\/www.openml.org\/data\/download\/1592283\/phpCsX3fx"}},"output_data":{"file":[{"did":"-1","file_id":"2108535","name":"description","url":"https:\/\/www.openml.org\/data\/download\/2108535\/run1724828718015855159.xml"},{"did":"-1","file_id":"2108536","name":"subgroups","url":"https:\/\/www.openml.org\/data\/download\/2108536\/subgroups1054668184097252524.csv"}],"evaluation":[{"name":"cortana_quality","value":"0.8232324","array_data":"[0.8232324, 0.8118687, 0.8017676, 0.7973485, 0.792298, 0.790404, 0.7872475, 0.7859849, 0.780303, 0.7796717, 0.7796717, 0.7790404, 0.7765151, 0.772096, 0.772096, 0.770202, 0.7664142, 0.7657828, 0.7632576, 0.7582071, 0.7575758, 0.7563131, 0.7506313, 0.7493687, 0.7493687, 0.7474747, 0.7424242, 0.7424242, 0.7417929, 0.7417929, 0.738005, 0.7348485, 0.7348485, 0.7329546, 0.7310606, 0.7266414, 0.7253788, 0.7253788, 0.7234849, 0.719697, 0.7171717, 0.7165404, 0.7133839, 0.709596, 0.7039142, 0.7032828, 0.7026515, 0.7013889, 0.6963384, 0.6944444, 0.6944444, 0.6931818, 0.6900253, 0.6893939, 0.6881313, 0.6868687, 0.6862374, 0.6862374, 0.6856061, 0.6849747, 0.6830808, 0.6830808, 0.6799242, 0.6786616, 0.6767676, 0.6761364, 0.6748737, 0.6729798, 0.6685606, 0.6679293, 0.667298, 0.6647727, 0.6597222, 0.6578283, 0.6565657, 0.6521465, 0.6496212, 0.6477273, 0.6477273, 0.647096, 0.6433081, 0.6401515, 0.6388889, 0.636995, 0.6357324, 0.6332071, 0.6306818, 0.6294192, 0.6268939, 0.6262626, 0.6256313, 0.625, 0.6212121, 0.6199495, 0.6174242, 0.6167929, 0.6155303, 0.614899, 0.613005, 0.6104798]"},{"name":"coverage","value":"296","array_data":"[296, 314, 330, 337, 345, 348, 353, 355, 364, 365, 265, 366, 370, 377, 277, 380, 386, 387, 391, 399, 400, 402, 411, 413, 413, 316, 424, 424, 325, 325, 431, 436, 336, 439, 342, 449, 451, 451, 254, 460, 464, 465, 470, 476, 385, 486, 487, 489, 397, 500, 300, 502, 207, 508, 310, 512, 513, 313, 214, 315, 518, 318, 223, 525, 528, 529, 531, 434, 541, 242, 543, 547, 555, 558, 560, 467, 571, 574, 374, 575, 481, 586, 588, 591, 293, 197, 601, 603, 607, 508, 609, 610, 616, 618, 322, 623, 225, 626, 429, 233]"},{"name":"positives","value":"16","array_data":"[16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 15, 16, 16, 16, 15, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 15, 16, 16, 15, 15, 16, 16, 15, 16, 15, 16, 16, 16, 14, 16, 16, 16, 16, 16, 15, 16, 16, 16, 15, 16, 14, 16, 13, 16, 14, 16, 16, 14, 13, 14, 16, 14, 13, 16, 16, 16, 16, 15, 16, 13, 16, 16, 16, 16, 16, 15, 16, 16, 14, 16, 15, 16, 16, 16, 13, 12, 16, 16, 16, 15, 16, 16, 16, 16, 13, 16, 12, 16, 14, 12]"},{"name":"probability","value":"0.0540541","array_data":"[0.0540541, 0.0509554, 0.0484848, 0.0474777, 0.0463768, 0.045977, 0.0453258, 0.0450704, 0.043956, 0.0438356, 0.0566038, 0.0437158, 0.0432432, 0.0424403, 0.0541516, 0.0421053, 0.0414508, 0.0413437, 0.0409207, 0.0401003, 0.04, 0.039801, 0.0389294, 0.0387409, 0.0387409, 0.0474684, 0.0377358, 0.0377358, 0.0461538, 0.0461538, 0.037123, 0.0366972, 0.0446429, 0.0364465, 0.0438596, 0.0356347, 0.0354767, 0.0354767, 0.0551181, 0.0347826, 0.0344828, 0.0344086, 0.0340426, 0.0336134, 0.038961, 0.0329218, 0.0328542, 0.0327198, 0.0377834, 0.032, 0.0466667, 0.0318725, 0.0628019, 0.0314961, 0.0451613, 0.03125, 0.0311891, 0.0447284, 0.0607477, 0.0444444, 0.030888, 0.0440252, 0.058296, 0.0304762, 0.030303, 0.0302457, 0.0301318, 0.0345622, 0.0295749, 0.053719, 0.0294659, 0.0292505, 0.0288288, 0.0286738, 0.0285714, 0.0321199, 0.028021, 0.0278746, 0.0374332, 0.0278261, 0.031185, 0.0273038, 0.0272109, 0.0270728, 0.0443686, 0.0609137, 0.0266223, 0.026534, 0.0263591, 0.0295276, 0.0262726, 0.0262295, 0.025974, 0.02589, 0.0403727, 0.0256822, 0.0533333, 0.0255591, 0.032634, 0.0515021]"},{"name":"joint_entropy","value":"5.326733072383618"},{"name":"pattern_team_auroc10","value":"0.8949455492424242"}]}}}