{"run":{"run_id":"724327","uploader":"1","uploader_name":"Jan van Rijn","task_id":"56211","task_type":"Subgroup Discovery","flow_id":"4221","flow_name":"SubgroupDiscovery(1)","setup_id":"7731","error":[],"setup_string":"{\"overall_ranking_loss\":\"0.0\",\"post_processing_count\":\"20\",\"search_depth\":\"1\",\"maximum_time\":\"1.0\",\"search_strategy_width\":\"16\",\"numeric_strategy\":\"bins\",\"numeric_operators\":\"≤, ≥, =<\\\/html>\",\"beta\":\"1.0\",\"minimum_coverage\":\"2\",\"nr_threads\":\"1\",\"search_strategy\":\"beam\",\"alpha\":\"0.5\",\"beam_seed\":\"\",\"use_nominal_sets\":\"false\",\"maximum_coverage_fraction\":\"1.0\",\"post_processing_do_autorun\":\"true\",\"nr_bins\":\"4\",\"maximum_subgroups\":\"100\"}","parameter_setting":[{"name":"search_depth","value":"1","component":"4221"},{"name":"minimum_coverage","value":"2","component":"4221"},{"name":"maximum_coverage_fraction","value":"1.0","component":"4221"},{"name":"maximum_subgroups","value":"100","component":"4221"},{"name":"maximum_time","value":"1.0","component":"4221"},{"name":"search_strategy","value":"beam","component":"4221"},{"name":"use_nominal_sets","value":"false","component":"4221"},{"name":"search_strategy_width","value":"16","component":"4221"},{"name":"numeric_operators","value":"≤, ≥, =<\/html>","component":"4221"},{"name":"numeric_strategy","value":"bins","component":"4221"},{"name":"nr_bins","value":"4","component":"4221"},{"name":"nr_threads","value":"1","component":"4221"},{"name":"alpha","value":"0.5","component":"4221"},{"name":"beta","value":"1.0","component":"4221"},{"name":"post_processing_do_autorun","value":"true","component":"4221"},{"name":"post_processing_count","value":"20","component":"4221"},{"name":"beam_seed","value":[],"component":"4221"},{"name":"overall_ranking_loss","value":"0.0","component":"4221"}],"tag":"Cortana","input_data":{"dataset":{"did":"1494","name":"qsar-biodeg","url":"https:\/\/www.openml.org\/data\/download\/1592286\/phpGUrE90"}},"output_data":{"file":[{"did":"-1","file_id":"2323165","name":"description","url":"https:\/\/www.openml.org\/data\/download\/2323165\/run5059702283480088855.xml"},{"did":"-1","file_id":"2323166","name":"subgroups","url":"https:\/\/www.openml.org\/data\/download\/2323166\/subgroups776166388744528456.csv"}],"evaluation":[{"name":"cortana_quality","value":"0.4656411","array_data":"[0.4656411, 0.4274847, 0.4203838, 0.4090956, 0.3921372, 0.3642483, 0.3517344, 0.3517344, 0.3444286, 0.3432873, 0.3400323, 0.3378141, 0.3378141, 0.3342134, 0.3130154, 0.3119424, 0.3091334, 0.3084181, 0.307514, 0.307514, 0.3046407, 0.3046407, 0.2942165, 0.2914597, 0.2914597, 0.2829805, 0.2784074, 0.2784074, 0.2780256, 0.2745013, 0.2725483, 0.2725483, 0.2715999, 0.2715999, 0.2663677, 0.2663677, 0.2605086, 0.2563654, 0.2514145, 0.2514145, 0.249779, 0.2490637, 0.2483484, 0.2448964, 0.2395115, 0.2372008, 0.2338172, 0.2335801, 0.2291074, 0.2182612, 0.2169632, 0.2081183, 0.1981884, 0.1974731, 0.1896047, 0.1892591, 0.1892591, 0.1707656, 0.1707656, 0.1689653, 0.1655977, 0.1398145, 0.1364027, 0.1317331, 0.1292818, 0.1289241, 0.1278231, 0.1267782, 0.117636, 0.1149154, 0.1141117, 0.1141117, 0.1112504, 0.1049453, 0.1036593, 0.1033459, 0.098174, 0.0950796, 0.0844344, 0.0816495, 0.0816495, 0.0810789, 0.0730417, 0.0727926, 0.0710003, 0.0598688, 0.0571081, 0.0567223, 0.0531618, 0.052559, 0.047367, 0.047367, 0.0457475, 0.0448715, 0.0448715, 0.0429707, 0.0429707, 0.0401296, 0.0386467, 0.0377907]"},{"name":"coverage","value":"528","array_data":"[528, 528, 530, 529, 529, 264, 658, 658, 266, 575, 275, 727, 727, 528, 528, 265, 264, 792, 357, 357, 522, 522, 796, 792, 792, 792, 730, 730, 265, 792, 823, 823, 634, 634, 691, 691, 784, 535, 657, 657, 264, 792, 265, 869, 529, 824, 856, 545, 883, 532, 850, 871, 792, 265, 798, 899, 899, 906, 906, 279, 797, 898, 607, 794, 529, 793, 207, 267, 792, 299, 264, 264, 266, 60, 215, 233, 530, 870, 264, 992, 992, 619, 269, 121, 792, 782, 129, 70, 31, 796, 1013, 1013, 51, 994, 994, 1022, 1022, 49, 53, 21]"},{"name":"positives","value":"288","array_data":"[288, 279, 278, 275, 271, 175, 305, 305, 171, 275, 173, 325, 325, 257, 252, 163, 162, 340, 193, 193, 248, 248, 338, 336, 336, 334, 312, 312, 155, 332, 342, 342, 278, 278, 296, 296, 326, 241, 281, 281, 148, 326, 148, 351, 235, 334, 344, 239, 352, 231, 338, 343, 314, 136, 314, 348, 348, 346, 346, 134, 308, 336, 237, 299, 209, 298, 100, 120, 295, 128, 116, 116, 116, 45, 97, 103, 202, 316, 109, 354, 354, 228, 108, 58, 284, 278, 57, 37, 23, 281, 353, 353, 28, 346, 346, 355, 355, 26, 27, 16]"},{"name":"probability","value":"0.5454545","array_data":"[0.5454545, 0.5284091, 0.5245283, 0.5198488, 0.5122873, 0.6628788, 0.4635258, 0.4635258, 0.6428571, 0.4782609, 0.6290909, 0.4470426, 0.4470426, 0.4867424, 0.4772727, 0.6150943, 0.6136364, 0.4292929, 0.5406162, 0.5406162, 0.4750958, 0.4750958, 0.4246231, 0.4242424, 0.4242424, 0.4217172, 0.4273973, 0.4273973, 0.5849057, 0.4191919, 0.4155529, 0.4155529, 0.4384858, 0.4384858, 0.4283647, 0.4283647, 0.4158163, 0.4504673, 0.4277017, 0.4277017, 0.5606061, 0.4116162, 0.5584906, 0.4039125, 0.4442344, 0.4053398, 0.4018692, 0.4385321, 0.398641, 0.4342105, 0.3976471, 0.3938002, 0.3964646, 0.5132075, 0.3934837, 0.3870968, 0.3870968, 0.3818985, 0.3818985, 0.4802867, 0.3864492, 0.3741648, 0.3904448, 0.3765743, 0.3950851, 0.3757881, 0.4830918, 0.4494382, 0.3724747, 0.4280936, 0.4393939, 0.4393939, 0.4360902, 0.75, 0.4511628, 0.4420601, 0.3811321, 0.3632184, 0.4128788, 0.3568548, 0.3568548, 0.368336, 0.401487, 0.4793388, 0.3585859, 0.3554987, 0.4418605, 0.5285714, 0.7419355, 0.3530151, 0.3484699, 0.3484699, 0.5490196, 0.3480885, 0.3480885, 0.3473581, 0.3473581, 0.5306122, 0.509434, 0.7619048]"},{"name":"joint_entropy","value":"7.898076000620227"},{"name":"pattern_team_auroc10","value":"0.7193241548922216"}]}}}