{"run":{"run_id":"946998","uploader":"1","uploader_name":"Jan van Rijn","task_id":"56211","task_type":"Subgroup Discovery","flow_id":"4221","flow_name":"SubgroupDiscovery(1)","setup_id":"7977","error":[],"setup_string":"{\"overall_ranking_loss\":\"0.0\",\"post_processing_count\":\"20\",\"search_depth\":\"2\",\"maximum_time\":\"1.0\",\"search_strategy_width\":\"4\",\"numeric_strategy\":\"best-bins\",\"numeric_operators\":\"≤, ≥<\\\/html>\",\"beta\":\"1.0\",\"minimum_coverage\":\"2\",\"nr_threads\":\"1\",\"search_strategy\":\"beam\",\"alpha\":\"0.5\",\"beam_seed\":\"\",\"use_nominal_sets\":\"false\",\"maximum_coverage_fraction\":\"1.0\",\"post_processing_do_autorun\":\"true\",\"nr_bins\":\"16\",\"maximum_subgroups\":\"100\"}","parameter_setting":[{"name":"search_depth","value":"2","component":"4221"},{"name":"minimum_coverage","value":"2","component":"4221"},{"name":"maximum_coverage_fraction","value":"1.0","component":"4221"},{"name":"maximum_subgroups","value":"100","component":"4221"},{"name":"maximum_time","value":"1.0","component":"4221"},{"name":"search_strategy","value":"beam","component":"4221"},{"name":"use_nominal_sets","value":"false","component":"4221"},{"name":"search_strategy_width","value":"4","component":"4221"},{"name":"numeric_operators","value":"≤, ≥<\/html>","component":"4221"},{"name":"numeric_strategy","value":"best-bins","component":"4221"},{"name":"nr_bins","value":"16","component":"4221"},{"name":"nr_threads","value":"1","component":"4221"},{"name":"alpha","value":"0.5","component":"4221"},{"name":"beta","value":"1.0","component":"4221"},{"name":"post_processing_do_autorun","value":"true","component":"4221"},{"name":"post_processing_count","value":"20","component":"4221"},{"name":"beam_seed","value":[],"component":"4221"},{"name":"overall_ranking_loss","value":"0.0","component":"4221"}],"tag":"Cortana","input_data":{"dataset":{"did":"1494","name":"qsar-biodeg","url":"https:\/\/www.openml.org\/data\/download\/1592286\/phpGUrE90"}},"output_data":{"file":[{"did":"-1","file_id":"2768513","name":"description","url":"https:\/\/www.openml.org\/data\/download\/2768513\/run2241969411072176155.xml"},{"did":"-1","file_id":"2768514","name":"subgroups","url":"https:\/\/www.openml.org\/data\/download\/2768514\/subgroups8277425675308677026.csv"}],"evaluation":[{"name":"cortana_quality","value":"0.545631","array_data":"[0.545631, 0.5397518, 0.5341861, 0.5341339, 0.5310636, 0.5238583, 0.5200366, 0.5179791, 0.516862, 0.5144709, 0.5096567, 0.5094477, 0.5093432, 0.5078604, 0.5049268, 0.5045089, 0.5037051, 0.5021901, 0.5021379, 0.5007073, 0.5003215, 0.4984207, 0.4983684, 0.4983684, 0.4983684, 0.4981073, 0.4972513, 0.4969378, 0.4966244, 0.4951214, 0.494599, 0.4941811, 0.4935341, 0.4933251, 0.492646, 0.4925415, 0.4925415, 0.4921035, 0.4906729, 0.4888042, 0.4875504, 0.4856496, 0.4855974, 0.4845847, 0.4827884, 0.48141, 0.4805018, 0.4787055, 0.478163, 0.4777772, 0.4776406, 0.4757398, 0.4756876, 0.4729308, 0.4728786, 0.4720226, 0.4715525, 0.4715002, 0.4713435, 0.4699129, 0.4686912, 0.4686912, 0.4677308, 0.4672606, 0.4658822, 0.46583, 0.4657778, 0.4647651, 0.4644516, 0.4643472, 0.4642427, 0.4641382, 0.463021, 0.4627075, 0.4626553, 0.4621128, 0.4612046, 0.460212, 0.4596896, 0.4596896, 0.4577165, 0.4565792, 0.4559724, 0.4559724, 0.4557635, 0.4557112, 0.455241, 0.4545418, 0.4544373, 0.4541239, 0.4540716, 0.4538627, 0.4536336, 0.4532679, 0.4532157, 0.452641, 0.4517328, 0.4517328, 0.4517328, 0.4513149]"},{"name":"coverage","value":"398","array_data":"[398, 411, 406, 409, 423, 431, 407, 444, 427, 402, 435, 447, 453, 457, 382, 406, 371, 458, 461, 462, 403, 431, 434, 434, 434, 449, 417, 435, 453, 377, 407, 431, 387, 399, 438, 444, 444, 388, 389, 334, 406, 434, 437, 414, 436, 434, 405, 427, 377, 318, 407, 435, 438, 434, 437, 405, 432, 435, 444, 445, 434, 434, 408, 435, 433, 436, 439, 416, 434, 440, 446, 452, 435, 453, 456, 406, 377, 434, 464, 464, 415, 318, 434, 434, 446, 449, 476, 435, 441, 459, 462, 474, 406, 427, 430, 463, 434, 434, 434, 458]"},{"name":"positives","value":"263","array_data":"[263, 266, 263, 264, 268, 269, 260, 272, 266, 257, 267, 271, 273, 274, 248, 256, 244, 273, 274, 274, 254, 263, 264, 264, 264, 269, 258, 264, 270, 244, 254, 262, 247, 251, 264, 266, 266, 247, 247, 228, 252, 261, 262, 254, 261, 260, 250, 257, 240, 220, 250, 259, 260, 258, 259, 248, 257, 258, 261, 261, 257, 257, 248, 257, 256, 257, 258, 250, 256, 258, 260, 262, 256, 262, 263, 246, 236, 255, 265, 265, 248, 215, 254, 254, 258, 259, 268, 254, 256, 262, 263, 267, 244, 251, 252, 263, 253, 253, 253, 261]"},{"name":"probability","value":"0.660804","array_data":"[0.660804, 0.6472019, 0.6477833, 0.6454768, 0.6335697, 0.6241299, 0.6388206, 0.6126126, 0.6229508, 0.6393035, 0.6137931, 0.606264, 0.602649, 0.5995624, 0.6492147, 0.6305419, 0.6576819, 0.5960699, 0.5943601, 0.5930736, 0.630273, 0.6102088, 0.6082949, 0.6082949, 0.6082949, 0.5991091, 0.618705, 0.6068966, 0.5960265, 0.6472149, 0.6240786, 0.6078886, 0.6382429, 0.6290727, 0.6027397, 0.5990991, 0.5990991, 0.6365979, 0.6349614, 0.6826347, 0.6206897, 0.6013825, 0.5995423, 0.6135266, 0.5986239, 0.5990783, 0.617284, 0.6018735, 0.6366048, 0.6918239, 0.6142506, 0.5954023, 0.5936073, 0.59447, 0.5926773, 0.6123457, 0.5949074, 0.5931034, 0.5878378, 0.5865169, 0.5921659, 0.5921659, 0.6078431, 0.5908046, 0.591224, 0.5894495, 0.5876993, 0.6009615, 0.5898618, 0.5863636, 0.5829596, 0.579646, 0.5885057, 0.5783664, 0.5767544, 0.6059113, 0.6259947, 0.5875576, 0.5711207, 0.5711207, 0.5975904, 0.6761006, 0.5852535, 0.5852535, 0.5784753, 0.5768374, 0.5630252, 0.583908, 0.5804989, 0.5708061, 0.5692641, 0.5632911, 0.6009852, 0.587822, 0.5860465, 0.5680346, 0.5829493, 0.5829493, 0.5829493, 0.569869]"},{"name":"joint_entropy","value":"4.463648947997446"},{"name":"pattern_team_auroc10","value":"0.7765889472922795"}]}}}