Data
hypothyroid

hypothyroid

active ARFF Publicly available Visibility: public Uploaded 04-10-2014 by Joaquin Vanschoren
0 likes downloaded by 9 people , 12 total downloads 0 issues 0 downvotes
  • mythbusting_1 study_1 study_144 study_15 study_20 study_41
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Author: Source: Unknown - Date unknown Please cite: Binarized version of the original data set (see version 1). The multi-class target feature is converted to a two-class nominal target feature by re-labeling the majority class as positive ('P') and all others as negative ('N'). Originally converted by Quan Sun.

30 features

binaryClass (target)nominal2 unique values
0 missing
agenumeric93 unique values
1 missing
sexnominal2 unique values
150 missing
on thyroxinenominal2 unique values
0 missing
query on thyroxinenominal2 unique values
0 missing
on antithyroid medicationnominal2 unique values
0 missing
sicknominal2 unique values
0 missing
pregnantnominal2 unique values
0 missing
thyroid surgerynominal2 unique values
0 missing
I131 treatmentnominal2 unique values
0 missing
query hypothyroidnominal2 unique values
0 missing
query hyperthyroidnominal2 unique values
0 missing
lithiumnominal2 unique values
0 missing
goitrenominal2 unique values
0 missing
tumornominal2 unique values
0 missing
hypopituitarynominal2 unique values
0 missing
psychnominal2 unique values
0 missing
TSH measurednominal2 unique values
0 missing
TSHnumeric287 unique values
369 missing
T3 measurednominal2 unique values
0 missing
T3numeric69 unique values
769 missing
TT4 measurednominal2 unique values
0 missing
TT4numeric241 unique values
231 missing
T4U measurednominal2 unique values
0 missing
T4Unumeric146 unique values
387 missing
FTI measurednominal2 unique values
0 missing
FTInumeric234 unique values
385 missing
TBG measurednominal1 unique values
0 missing
TBGnumeric0 unique values
3772 missing
referral sourcenominal5 unique values
0 missing

107 properties

3772
Number of instances (rows) of the dataset.
30
Number of attributes (columns) of the dataset.
2
Number of distinct values of the target attribute (if it is nominal).
6064
Number of missing values in the dataset.
3772
Number of instances with at least one value missing.
7
Number of numeric attributes.
23
Number of nominal attributes.
46.44
Mean of means among attributes of the numeric type.
0.05
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes
5.98
First quartile of kurtosis among attributes of the numeric type.
33.72
Third quartile of standard deviation of attributes of the numeric type.
0.98
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.95
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.01
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .0001
0
Average mutual information between the nominal attributes and the target attribute.
0.55
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes
1.76
First quartile of means among attributes of the numeric type.
0.99
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.03
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.02
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.96
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .0001
201.19
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
21
Number of binary attributes.
0
First quartile of mutual information between the nominal attributes and the target attribute.
0.01
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.81
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.89
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.99
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .001
2.09
Average number of distinct values among the attributes of the nominal type.
1.26
First quartile of skewness among attributes of the numeric type.
0.95
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.98
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.67
Standard deviation of the number of distinct values among attributes of the nominal type.
0.01
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .001
3.57
Mean skewness among attributes of the numeric type.
0.67
First quartile of standard deviation of attributes of the numeric type.
0.99
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.03
Error rate achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.66
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk
0.96
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .001
19.05
Mean standard deviation of attributes of the numeric type.
0.26
Second quartile (Median) of entropy among attributes.
0.01
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.81
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.09
Error rate achieved by the landmarker weka.classifiers.lazy.IBk
92.29
Percentage of instances belonging to the most frequent class.
0
Minimal entropy among attributes.
8.87
Second quartile (Median) of kurtosis among attributes of the numeric type.
0.95
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.39
Entropy of the target attribute values.
0.35
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk
3481
Number of instances belonging to the most frequent class.
1.52
Maximum entropy among attributes.
4.07
Minimum kurtosis among attributes of the numeric type.
28.41
Second quartile (Median) of means among attributes of the numeric type.
0.99
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.98
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump
238.18
Maximum kurtosis among attributes of the numeric type.
0.99
Minimum of means among attributes of the numeric type.
0
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
0.01
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.02
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump
110.47
Maximum of means among attributes of the numeric type.
0
Minimal mutual information between the nominal attributes and the target attribute.
1.54
Second quartile (Median) of skewness among attributes of the numeric type.
0.95
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.87
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump
0.01
Maximum mutual information between the nominal attributes and the target attribute.
1
The minimal number of distinct values among attributes of the nominal type.
70
Percentage of binary attributes.
22.3
Second quartile (Median) of standard deviation of attributes of the numeric type.
0.95
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.01
Number of attributes divided by the number of instances.
5
The maximum number of distinct values among attributes of the nominal type.
1.23
Minimum skewness among attributes of the numeric type.
100
Percentage of instances having missing values.
0.48
Third quartile of entropy among attributes.
0.02
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
234.83
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
13.88
Maximum skewness among attributes of the numeric type.
0.2
Minimum standard deviation of attributes of the numeric type.
5.36
Percentage of missing values.
90.94
Third quartile of kurtosis among attributes of the numeric type.
0.86
Average class difference between consecutive instances.
0.89
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.99
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .00001
35.6
Maximum standard deviation of attributes of the numeric type.
7.71
Percentage of instances belonging to the least frequent class.
23.33
Percentage of numeric attributes.
108.86
Third quartile of means among attributes of the numeric type.
0.98
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.95
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.01
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .00001
0.34
Average entropy of the attributes.
291
Number of instances belonging to the least frequent class.
76.67
Percentage of nominal attributes.
0
Third quartile of mutual information between the nominal attributes and the target attribute.
0.03
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.02
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.96
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .00001
51.41
Mean kurtosis among attributes of the numeric type.
0.91
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes
0.1
First quartile of entropy among attributes.
4.94
Third quartile of skewness among attributes of the numeric type.
0.81
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.89
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.99
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .0001

7 tasks

522 runs - estimation_procedure: 10-fold Crossvalidation - evaluation_measure: predictive_accuracy - target_feature: binaryClass
215 runs - estimation_procedure: 10 times 10-fold Crossvalidation - evaluation_measure: predictive_accuracy - target_feature: binaryClass
0 runs - estimation_procedure: 33% Holdout set - evaluation_measure: predictive_accuracy - target_feature: binaryClass
0 runs - estimation_procedure: Interleaved Test then Train - target_feature: binaryClass
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task