Data
primary-tumor

primary-tumor

active ARFF Publicly available Visibility: public Uploaded 04-10-2014 by Joaquin Vanschoren
0 likes downloaded by 6 people , 8 total downloads 0 issues 0 downvotes
  • mythbusting_1 study_1 study_144 study_15 study_20 study_41
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Author: Source: Unknown - Date unknown Please cite: Binarized version of the original data set (see version 1). The multi-class target feature is converted to a two-class nominal target feature by re-labeling the majority class as positive ('P') and all others as negative ('N'). Originally converted by Quan Sun.

18 features

binaryClass (target)nominal2 unique values
0 missing
agenominal3 unique values
0 missing
sexnominal2 unique values
1 missing
histologic-typenominal3 unique values
67 missing
degree-of-diffenominal3 unique values
155 missing
bonenominal2 unique values
0 missing
bone-marrownominal2 unique values
0 missing
lungnominal2 unique values
0 missing
pleuranominal2 unique values
0 missing
peritoneumnominal2 unique values
0 missing
livernominal2 unique values
0 missing
brainnominal2 unique values
0 missing
skinnominal2 unique values
1 missing
necknominal2 unique values
0 missing
supraclavicularnominal2 unique values
0 missing
axillarnominal2 unique values
1 missing
mediastinumnominal2 unique values
0 missing
abdominalnominal2 unique values
0 missing

19 properties

339
Number of instances (rows) of the dataset.
18
Number of attributes (columns) of the dataset.
2
Number of distinct values of the target attribute (if it is nominal).
225
Number of missing values in the dataset.
207
Number of instances with at least one value missing.
0
Number of numeric attributes.
18
Number of nominal attributes.
84
Number of instances belonging to the least frequent class.
15
Number of binary attributes.
83.33
Percentage of binary attributes.
61.06
Percentage of instances having missing values.
0.61
Average class difference between consecutive instances.
3.69
Percentage of missing values.
0.05
Number of attributes divided by the number of instances.
0
Percentage of numeric attributes.
75.22
Percentage of instances belonging to the most frequent class.
100
Percentage of nominal attributes.
255
Number of instances belonging to the most frequent class.
24.78
Percentage of instances belonging to the least frequent class.

6 tasks

571 runs - estimation_procedure: 10-fold Crossvalidation - evaluation_measure: predictive_accuracy - target_feature: binaryClass
198 runs - estimation_procedure: 10 times 10-fold Crossvalidation - evaluation_measure: predictive_accuracy - target_feature: binaryClass
0 runs - estimation_procedure: 33% Holdout set - target_feature: binaryClass
0 runs - estimation_procedure: Interleaved Test then Train - target_feature: binaryClass
Define a new task