Data
white-clover

white-clover

active ARFF Publicly available Visibility: public Uploaded 04-10-2014 by Joaquin Vanschoren
0 likes downloaded by 5 people , 5 total downloads 0 issues 0 downvotes
  • mythbusting_1 study_1 study_15 study_20 study_41
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Author: Source: Unknown - Date unknown Please cite: Binarized version of the original data set (see version 1). The multi-class target feature is converted to a two-class nominal target feature by re-labeling the majority class as positive ('P') and all others as negative ('N'). Originally converted by Quan Sun.

32 features

binaryClass (target)nominal2 unique values
0 missing
stratanominal7 unique values
0 missing
plotnominal3 unique values
0 missing
paddocknominal3 unique values
0 missing
WhiteClover-91numeric51 unique values
0 missing
BareGround-91numeric32 unique values
0 missing
Cocksfoot-91numeric50 unique values
0 missing
OtherGrasses-91numeric55 unique values
0 missing
OtherLegumes-91numeric36 unique values
0 missing
RyeGrass-91numeric58 unique values
0 missing
Weeds-91numeric51 unique values
0 missing
WhiteClover-92numeric51 unique values
0 missing
BareGround-92numeric31 unique values
0 missing
Cocksfoot-92numeric51 unique values
0 missing
OtherGrasses-92numeric42 unique values
0 missing
OtherLegumes-92numeric32 unique values
0 missing
RyeGrass-92numeric51 unique values
0 missing
Weeds-92numeric44 unique values
0 missing
WhiteClover-93numeric50 unique values
0 missing
BareGround-93numeric20 unique values
0 missing
Cocksfoot-93numeric53 unique values
0 missing
OtherGrasses-93numeric50 unique values
0 missing
OtherLegumes-93numeric40 unique values
0 missing
RyeGrass-93numeric52 unique values
0 missing
Weeds-93numeric51 unique values
0 missing
BareGround-94numeric23 unique values
0 missing
Cocksfoot-94numeric50 unique values
0 missing
OtherGrasses-94numeric45 unique values
0 missing
OtherLegumes-94numeric42 unique values
0 missing
RyeGrass-94numeric50 unique values
0 missing
Weeds-94numeric49 unique values
0 missing
strata-combinednominal3 unique values
0 missing

108 properties

63
Number of instances (rows) of the dataset.
32
Number of attributes (columns) of the dataset.
2
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
27
Number of numeric attributes.
5
Number of nominal attributes.
15.63
Percentage of nominal attributes.
0.18
Third quartile of mutual information between the nominal attributes and the target attribute.
0.19
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.4
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.25
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .00001
1.84
Average entropy of the attributes.
0.75
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes
1.43
First quartile of entropy among attributes.
0.75
DataQuality extracted from Fantail Library
0.63
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.19
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.68
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .0001
27.72
Mean kurtosis among attributes of the numeric type.
0.32
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes
-1.2
First quartile of kurtosis among attributes of the numeric type.
4.82
DataQuality extracted from Fantail Library
0.41
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.59
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.35
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .0001
-10735.77
Mean of means among attributes of the numeric type.
0.36
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes
-0
First quartile of means among attributes of the numeric type.
0.49
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.19
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.4
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.25
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .0001
0.09
Average mutual information between the nominal attributes and the target attribute.
18.63
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
0.02
First quartile of mutual information between the nominal attributes and the target attribute.
0.4
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.63
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.19
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.68
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .001
4
Average number of distinct values among the attributes of the nominal type.
1
Number of binary attributes.
-0.04
First quartile of skewness among attributes of the numeric type.
0
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.41
Error rate achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
2
Standard deviation of the number of distinct values among attributes of the nominal type.
0.35
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .001
0.93
Mean skewness among attributes of the numeric type.
1
DataQuality extracted from Fantail Library
0.49
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.19
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.68
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk
0.25
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .001
9688.66
Mean standard deviation of attributes of the numeric type.
1.58
Second quartile (Median) of entropy among attributes.
0.4
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.97
Entropy of the target attribute values.
0.32
Error rate achieved by the landmarker weka.classifiers.lazy.IBk
60.32
Percentage of instances belonging to the most frequent class.
1.38
Minimal entropy among attributes.
-0.85
Second quartile (Median) of kurtosis among attributes of the numeric type.
0
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.61
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump
0.35
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk
38
Number of instances belonging to the most frequent class.
-2
Minimum kurtosis among attributes of the numeric type.
0
Second quartile (Median) of means among attributes of the numeric type.
0.49
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.44
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump
2.81
Maximum entropy among attributes.
-91638847.15
Minimum of means among attributes of the numeric type.
0.08
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
0.4
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.15
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump
11281.77
Maximum kurtosis among attributes of the numeric type.
0
Minimal mutual information between the nominal attributes and the target attribute.
0.05
Second quartile (Median) of skewness among attributes of the numeric type.
0
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.6
The predictive accuracy obtained by always predicting the majority class.
26074559.21
Maximum of means among attributes of the numeric type.
3
The minimal number of distinct values among attributes of the nominal type.
3.13
Percentage of binary attributes.
1
DataQuality extracted from Fantail Library
0.59
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.51
Number of attributes divided by the number of instances.
0.21
Maximum mutual information between the nominal attributes and the target attribute.
-75.96
Minimum skewness among attributes of the numeric type.
0
Percentage of instances having missing values.
2.5
Third quartile of entropy among attributes.
0.66
Average class difference between consecutive instances.
0.4
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
10.34
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
7
The maximum number of distinct values among attributes of the nominal type.
0
DataQuality extracted from Fantail Library
0
Percentage of missing values.
0.67
Third quartile of kurtosis among attributes of the numeric type.
0.63
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.19
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.68
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .00001
103.69
Maximum skewness among attributes of the numeric type.
0.4
Percentage of instances belonging to the least frequent class.
84.38
Percentage of numeric attributes.
9.89
Third quartile of means among attributes of the numeric type.
0.41
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.59
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.35
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .00001
21111483.87
DataQuality extracted from Fantail Library
25
Number of instances belonging to the least frequent class.

4 tasks

499 runs - estimation_procedure: 10-fold Crossvalidation - evaluation_measure: predictive_accuracy - target_feature: binaryClass
205 runs - estimation_procedure: 10 times 10-fold Crossvalidation - evaluation_measure: predictive_accuracy - target_feature: binaryClass
0 runs - estimation_procedure: Interleaved Test then Train - target_feature: binaryClass
0 runs - estimation_procedure: 50 times Clustering
Define a new task

Discussions

Loading discussions...