{ "data_id": "1046", "name": "mozilla4", "exact_name": "mozilla4", "version": 1, "version_label": null, "description": "**Author**: \n**Source**: Unknown - Date unknown \n**Please cite**: \n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\nThis is a PROMISE Software Engineering Repository data set made publicly\navailable in order to encourage repeatable, verifiable, refutable, and\/or\nimprovable predictive models of software engineering.\n\nIf you publish material based on PROMISE data sets then, please\nfollow the acknowledgment guidelines posted on the PROMISE repository\nweb page http:\/\/promisedata.org\/repository .\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n(c) 2007 A. Gunes Koru\nContact: gkoru AT umbc DOT edu Phone: +1 (410) 455 8843\nThis data set is distributed under the\nCreative Commons Attribution-Share Alike 3.0 License\nhttp:\/\/creativecommons.org\/licenses\/by-sa\/3.0\/\n\nYou are free:\n\n* to Share -- copy, distribute and transmit the work\n* to Remix -- to adapt the work\n\nUnder the following conditions:\n\nAttribution. You must attribute the work in the manner specified by\nthe author or licensor (but not in any way that suggests that they endorse\nyou or your use of the work).\n\nShare Alike. If you alter, transform, or build upon this work, you\nmay distribute the resulting work only under the same, similar or a\ncompatible license.\n\n* For any reuse or distribution, you must make clear to others the\nlicense terms of this work.\n* Any of the above conditions can be waived if you get permission from\nthe copyright holder.\n* Apart from the remix rights granted under this license, nothing in\nthis license impairs or restricts the author's moral rights.\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\n\n1. Title: Recurrent event (defect fix) and size data for Mozilla Classes\nThis one includes a binary attribute (event) to show defect fix.\nThe data is at the \"observation\" level. Each modification made to\na C++ class was entered as an observation. A newly added class\ncreated an observation. The observation period was between\nMay 29, 2002 and Feb 22, 2006.\n\n2. Sources\n(a) Creator: A. Gunes Koru\n(b) Date: February 23, 2007\n(c) Contact: gkoru AT umbc DOT edu Phone: +1 (410) 455 8843\n\n3. Donor: A. Gunes Koru\n\n4. Past Usage: This data set was used for:\n\nA. Gunes Koru, Dongsong Zhang, and Hongfang Liu, \"Modeling the\nEffect of Size on Defect Proneness for Open-Source Software\",\nPredictive Models in Software Engineering Workshop, PROMISE 2007,\nMay 20th 2007, Minneapolis, Minnesota, US.\n\nAbstract:\nQuality is becoming increasingly important with the continuous\nadoption of open-source software. Previous research has found that\nthere is generally a positive relationship between module size and\ndefect proneness. Therefore, in open-source software development, it\nis important to monitor module size and understand its impact on\ndefect proneness. However, traditional approaches to quality\nmodeling, which measure specific system snapshots and obtain future\ndefect counts, are not well suited because open-source modules\nusually evolve and their size changes over time. In this study, we\nused Cox proportional hazards modeling with recurrent events to\nstudy the effect of class size on defect-proneness in the Mozilla\nproduct. We found that the effect of size was significant, and we\nquantified this effect on defect proneness.\n\nThe full paper can be downloaded from A. Gunes Koru's Website\nhttp:\/\/umbc.edu\/~gkoru\nby following the Publications link or from the Web site of PROMISE 2007.\n\n5. Features:\n\nThis data set is used to create a conditional Cox Proportional\nHazards Model\n\nid: A numeric identification assigned to each separate C++ class\n(Note that the id's do not increment from the first to the last\ndata row)\n\nstart: A time infinitesimally greater than the time of the modification\nthat created this observation (practically, modification time). When a\nclass is introduced to a system, a new observation is entered with start=0\n\nend: Either the time of the next modification, or the end of the\nobservation period, or the time of deletion, whichever comes first.\n\nevent: event is set to 1 if a defect fix takes place\nat the time represented by 'end', or 0 otherwise. A class deletion\nis handled easily by entering a final observation whose event is set\nto 1 if the class is deleted for corrective maintenance, or 0 otherwise.\n\nsize: It is a time-dependent covariate and its column carries the\nnumber of source Lines of Code of the C++ classes\nat time 'start'. Blank and comment lines are not counted.\n\nstate: Initially set to 0, and it becomes 1 after the class\nexperiences an event, and remains at 1 thereafter.", "format": "ARFF", "uploader": "Joaquin Vanschoren", "uploader_id": 2, "visibility": "public", "creator": null, "contributor": null, "date": "2014-10-06 23:57:07", "update_comment": null, "last_update": "2014-10-06 23:57:07", "licence": "Public", "status": "active", "error_message": null, "url": "https:\/\/www.openml.org\/data\/download\/53929\/mozilla4.arff", "default_target_attribute": "state", "row_id_attribute": null, "ignore_attribute": null, "runs": 106580, "suggest": { "input": [ "mozilla4", "%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% This is a PROMISE Software Engineering Repository data set made publicly available in order to encourage repeatable, verifiable, refutable, and\/or improvable predictive models of software engineering. If you publish material based on PROMISE data sets then, please follow the acknowledgment guidelines posted on the PROMISE repository web page http:\/\/promisedata.org\/repository . %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% " ], "weight": 5 }, "qualities": { "NumberOfInstances": 15545, "NumberOfFeatures": 6, "NumberOfClasses": 2, "NumberOfMissingValues": 0, "NumberOfInstancesWithMissingValues": 0, "NumberOfNumericFeatures": 5, "NumberOfSymbolicFeatures": 1, "Quartile2SkewnessOfNumericAtts": 0.6756672049543457, "REPTreeDepth3Kappa": 0.8621815044643241, "DecisionStumpKappa": 0.8434656903703545, "MaxMeansOfNumericAtts": 676568.2015439087, "MinMutualInformation": null, "PercentageOfBinaryFeatures": 16.666666666666664, "Quartile2StdDevOfNumericAtts": 1151.8172588658424, "RandomTreeDepth1AUC": 0.9200748080232897, "Dimensionality": 0.00038597619813444836, "MaxMutualInformation": null, "MinNominalAttDistinctValues": 2, "PercentageOfInstancesWithMissingValues": 0, "Quartile3AttributeEntropy": null, "RandomTreeDepth1ErrRate": 0.06954004503055645, "EquivalentNumberOfAtts": null, "MaxNominalAttDistinctValues": 2, "MinSkewnessOfNumericAtts": -0.274164554996334, "PercentageOfMissingValues": 0, "Quartile3KurtosisOfNumericAtts": 26.895300913258183, "AutoCorrelation": 0.7130725681935152, "RandomTreeDepth1Kappa": 0.8420434249559102, "J48.00001.AUC": 0.9471577854343123, "MaxSkewnessOfNumericAtts": 5.892621234393996, "MinStdDevOfNumericAtts": 0.4953841184605772, "PercentageOfNumericFeatures": 83.33333333333334, "Quartile3MeansOfNumericAtts": 552730.3292377013, "CfsSubsetEval_DecisionStumpAUC": 0.9487463431444467, "RandomTreeDepth2AUC": 0.9200748080232897, "J48.00001.ErrRate": 0.057317465422965584, "MaxStdDevOfNumericAtts": 585391.1495024165, "MinorityClassPercentage": 32.859440334512705, "PercentageOfSymbolicFeatures": 16.666666666666664, "Quartile3MutualInformation": null, "CfsSubsetEval_DecisionStumpErrRate": 0.056481183660340946, "RandomTreeDepth2ErrRate": 0.06954004503055645, "J48.00001.Kappa": 0.865841427679572, "MeanAttributeEntropy": null, "MinorityClassSize": 5108, "Quartile1AttributeEntropy": null, "Quartile3SkewnessOfNumericAtts": 3.5196453894030957, "CfsSubsetEval_DecisionStumpKappa": 0.8666354647527617, "RandomTreeDepth2Kappa": 0.8420434249559102, "J48.0001.AUC": 0.9471577854343123, "MeanKurtosisOfNumericAtts": 9.97548065751711, "NaiveBayesAUC": 0.8283914088391722, "Quartile1KurtosisOfNumericAtts": -1.5578760957638447, "Quartile3StdDevOfNumericAtts": 549107.0836011729, "CfsSubsetEval_NaiveBayesAUC": 0.9487463431444467, "RandomTreeDepth3AUC": 0.9200748080232897, "J48.0001.ErrRate": 0.057317465422965584, "MeanMeansOfNumericAtts": 221598.56303634783, "NaiveBayesErrRate": 0.31457060147957544, "Quartile1MeansOfNumericAtts": 217.2915728530073, "REPTreeDepth1AUC": 0.9538485433989626, "CfsSubsetEval_NaiveBayesErrRate": 0.056481183660340946, "RandomTreeDepth3ErrRate": 0.06954004503055645, "J48.0001.Kappa": 0.865841427679572, "MeanMutualInformation": null, "NaiveBayesKappa": 0.4004617644160084, "Quartile1MutualInformation": null, "REPTreeDepth1ErrRate": 0.0590543583145706, "CfsSubsetEval_NaiveBayesKappa": 0.8666354647527617, "RandomTreeDepth3Kappa": 0.8420434249559102, "J48.001.AUC": 0.9471577854343123, "MeanNoiseToSignalRatio": null, "NumberOfBinaryFeatures": 1, "Quartile1SkewnessOfNumericAtts": -0.1787991199473595, "REPTreeDepth1Kappa": 0.8621815044643241, "CfsSubsetEval_kNN1NAUC": 0.9487463431444467, "StdvNominalAttDistinctValues": 0, "J48.001.ErrRate": 0.057317465422965584, "MeanNominalAttDistinctValues": 2, "Quartile1StdDevOfNumericAtts": 455.867937353985, "REPTreeDepth2AUC": 0.9538485433989626, "CfsSubsetEval_kNN1NErrRate": 0.056481183660340946, "kNN1NAUC": 0.860730216403016, "J48.001.Kappa": 0.865841427679572, "MeanSkewnessOfNumericAtts": 1.4714719487731638, "Quartile2AttributeEntropy": null, "REPTreeDepth2ErrRate": 0.0590543583145706, "CfsSubsetEval_kNN1NKappa": 0.8666354647527617, "kNN1NErrRate": 0.12370537150209071, "MajorityClassPercentage": 67.1405596654873, "MeanStdDevOfNumericAtts": 220055.54406718392, "Quartile2KurtosisOfNumericAtts": -0.7974463474031417, "REPTreeDepth2Kappa": 0.8621815044643241, "ClassEntropy": 0.9134838311406803, "kNN1NKappa": 0.7206608472775593, "MajorityClassSize": 10437, "MinAttributeEntropy": null, "Quartile2MeansOfNumericAtts": 2097.573560630681, "REPTreeDepth3AUC": 0.9538485433989626, "DecisionStumpAUC": 0.8994176960934042, "MaxAttributeEntropy": null, "MinKurtosisOfNumericAtts": -1.9250814918850943, "Quartile2MutualInformation": null, "REPTreeDepth3ErrRate": 0.0590543583145706, "DecisionStumpErrRate": 0.06555162431650048, "MaxKurtosisOfNumericAtts": 53.590950174838504, "MinMeansOfNumericAtts": 0.5678996461884805 }, "tags": [ { "tag": "mythbusting_1", "uploader": "1" }, { "tag": "OpenML100", "uploader": "348" }, { "tag": "study_1", "uploader": "2" }, { "tag": "study_123", "uploader": "3886" }, { "tag": "study_135", "uploader": "5824" }, { "tag": "study_14", "uploader": "64" }, { "tag": "study_15", "uploader": "939" }, { "tag": "study_20", "uploader": "939" }, { "tag": "study_34", "uploader": "1" }, { "tag": "study_41", "uploader": "1" }, { "tag": "study_7", "uploader": "64" }, { "tag": "time_series", "uploader": "1" } ], "features": [ { "name": "state", "index": "5", "type": "nominal", "distinct": "2", "missing": "0", "target": "1", "distr": [ [ "0", "1" ], [ [ "5108", "0" ], [ "0", "10437" ] ] ] }, { "name": "id", "index": "0", "type": "numeric", "distinct": "4089", "missing": "0", "min": "1", "max": "4089", "mean": "2098", "stdev": "1152" }, { "name": "start", "index": "1", "type": "numeric", "distinct": "8525", "missing": "0", "min": "0", "max": "1952359", "mean": "428892", "stdev": "512823" }, { "name": "end", "index": "2", "type": "numeric", "distinct": "10599", "missing": "0", "min": "1", "max": "1965873", "mean": "676568", "stdev": "585391" }, { "name": "event", "index": "3", "type": "numeric", "distinct": "2", "missing": "0", "min": "0", "max": "1", "mean": "1", "stdev": "0" }, { "name": "size", "index": "4", "type": "numeric", "distinct": "2000", "missing": "0", "min": "1", "max": "12363", "mean": "434", "stdev": "911" } ], "nr_of_issues": 0, "nr_of_downvotes": 0, "nr_of_likes": 1, "nr_of_downloads": 18, "total_downloads": 18, "reach": 19, "reuse": 17, "impact_of_reuse": 0, "reach_of_reuse": 3, "impact": 18 }