Data
BNG(wisconsin)

BNG(wisconsin)

active ARFF public domain Visibility: public Uploaded 12-11-2014 by Jan van Rijn
0 likes downloaded by 1 people , 2 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit

33 features

time (target)numeric994623 unique values
0 missing
lymph_node_statusnumeric377206 unique values
0 missing
radius_meannumeric951575 unique values
0 missing
radius_senumeric962697 unique values
0 missing
radius_worstnumeric992497 unique values
0 missing
texture_meannumeric999546 unique values
0 missing
texture_senumeric64393 unique values
0 missing
texture_worstnumeric215665 unique values
0 missing
perimeter_meannumeric279014 unique values
0 missing
perimeter_senumeric156819 unique values
0 missing
perimeter_worstnumeric132432 unique values
0 missing
area_meannumeric37252 unique values
0 missing
area_senumeric596537 unique values
0 missing
area_worstnumeric723172 unique values
0 missing
smoothness_meannumeric912000 unique values
0 missing
smoothness_senumeric995391 unique values
0 missing
smoothness_worstnumeric22236 unique values
0 missing
compactness_meannumeric89052 unique values
0 missing
compactness_senumeric101802 unique values
0 missing
compactness_worstnumeric31583 unique values
0 missing
concavity_meannumeric53007 unique values
0 missing
concavity_senumeric12149 unique values
0 missing
concavity_worstnumeric963223 unique values
0 missing
concave_points_meannumeric973637 unique values
0 missing
concave_points_senumeric994579 unique values
0 missing
concave_points_worstnumeric999701 unique values
0 missing
symmetry_meannumeric113786 unique values
0 missing
symmetry_senumeric451824 unique values
0 missing
symmetry_worstnumeric489528 unique values
0 missing
fractal_dimension_meannumeric204420 unique values
0 missing
fractal_dimension_senumeric283513 unique values
0 missing
fractal_dimension_worstnumeric105967 unique values
0 missing
tumor_sizenumeric883561 unique values
0 missing

62 properties

1000000
Number of instances (rows) of the dataset.
33
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
33
Number of numeric attributes.
0
Number of nominal attributes.
0
Percentage of binary attributes.
0.16
Second quartile (Median) of standard deviation of attributes of the numeric type.
Maximum entropy among attributes.
-0.8
Minimum kurtosis among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
4.48
Maximum kurtosis among attributes of the numeric type.
0
Minimum of means among attributes of the numeric type.
0
Percentage of missing values.
1.93
Third quartile of kurtosis among attributes of the numeric type.
1391.26
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
100
Percentage of numeric attributes.
21.66
Third quartile of means among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
0
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
The maximum number of distinct values among attributes of the nominal type.
-0.09
Minimum skewness among attributes of the numeric type.
First quartile of entropy among attributes.
1.34
Third quartile of skewness among attributes of the numeric type.
2.11
Maximum skewness among attributes of the numeric type.
0
Minimum standard deviation of attributes of the numeric type.
0.04
First quartile of kurtosis among attributes of the numeric type.
4.95
Third quartile of standard deviation of attributes of the numeric type.
572.9
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
0.09
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
First quartile of mutual information between the nominal attributes and the target attribute.
1.03
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
0.54
First quartile of skewness among attributes of the numeric type.
85.95
Mean of means among attributes of the numeric type.
0.02
First quartile of standard deviation of attributes of the numeric type.
-38.02
Average class difference between consecutive instances.
Average mutual information between the nominal attributes and the target attribute.
Second quartile (Median) of entropy among attributes.
Entropy of the target attribute values.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
0.46
Second quartile (Median) of kurtosis among attributes of the numeric type.
0
Number of attributes divided by the number of instances.
Average number of distinct values among the attributes of the nominal type.
0.36
Second quartile (Median) of means among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
0.94
Mean skewness among attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Percentage of instances belonging to the most frequent class.
32.71
Mean standard deviation of attributes of the numeric type.
0.85
Second quartile (Median) of skewness among attributes of the numeric type.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.

2 tasks

0 runs - estimation_procedure: 50 times Clustering
Define a new task