Data
BNG(credit-g,nominal,1000000)

BNG(credit-g,nominal,1000000)

active ARFF Publicly available Visibility: public Uploaded 08-04-2014 by Jan van Rijn
0 likes downloaded by 3 people , 4 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit

21 features

class (target)nominal2 unique values
0 missing
checking_statusnominal4 unique values
0 missing
durationnominal3 unique values
0 missing
credit_historynominal5 unique values
0 missing
purposenominal11 unique values
0 missing
credit_amountnominal3 unique values
0 missing
savings_statusnominal5 unique values
0 missing
employmentnominal5 unique values
0 missing
installment_commitmentnominal3 unique values
0 missing
personal_statusnominal5 unique values
0 missing
other_partiesnominal3 unique values
0 missing
residence_sincenominal3 unique values
0 missing
property_magnitudenominal4 unique values
0 missing
agenominal3 unique values
0 missing
other_payment_plansnominal3 unique values
0 missing
housingnominal3 unique values
0 missing
existing_creditsnominal3 unique values
0 missing
jobnominal4 unique values
0 missing
num_dependentsnominal3 unique values
0 missing
own_telephonenominal2 unique values
0 missing
foreign_workernominal2 unique values
0 missing

107 properties

1000000
Number of instances (rows) of the dataset.
21
Number of attributes (columns) of the dataset.
2
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
0
Number of numeric attributes.
21
Number of nominal attributes.
82.28
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
3
Number of binary attributes.
0
First quartile of mutual information between the nominal attributes and the target attribute.
0.22
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.38
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.33
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.79
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .001
3.76
Average number of distinct values among the attributes of the nominal type.
First quartile of skewness among attributes of the numeric type.
0.43
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.77
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
1.92
Standard deviation of the number of distinct values among attributes of the nominal type.
0.22
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .001
Mean skewness among attributes of the numeric type.
First quartile of standard deviation of attributes of the numeric type.
0.8
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.24
Error rate achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.75
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk
0.45
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .001
Mean standard deviation of attributes of the numeric type.
1.33
Second quartile (Median) of entropy among attributes.
0.22
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.38
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.25
Error rate achieved by the landmarker weka.classifiers.lazy.IBk
69.96
Percentage of instances belonging to the most frequent class.
0.24
Minimal entropy among attributes.
Second quartile (Median) of kurtosis among attributes of the numeric type.
0.43
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.88
Entropy of the target attribute values.
0.36
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk
699587
Number of instances belonging to the most frequent class.
Minimum kurtosis among attributes of the numeric type.
Second quartile (Median) of means among attributes of the numeric type.
0.8
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.67
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump
2.69
Maximum entropy among attributes.
Minimum of means among attributes of the numeric type.
0.01
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
0.22
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.3
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump
Maximum kurtosis among attributes of the numeric type.
0
Minimal mutual information between the nominal attributes and the target attribute.
Second quartile (Median) of skewness among attributes of the numeric type.
0.43
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump
Maximum of means among attributes of the numeric type.
2
The minimal number of distinct values among attributes of the nominal type.
14.29
Percentage of binary attributes.
Second quartile (Median) of standard deviation of attributes of the numeric type.
0.68
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0
Number of attributes divided by the number of instances.
0.09
Maximum mutual information between the nominal attributes and the target attribute.
Minimum skewness among attributes of the numeric type.
0
Percentage of instances having missing values.
1.72
Third quartile of entropy among attributes.
0.27
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
57.9
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
11
The maximum number of distinct values among attributes of the nominal type.
Minimum standard deviation of attributes of the numeric type.
0
Percentage of missing values.
Third quartile of kurtosis among attributes of the numeric type.
0.58
Average class difference between consecutive instances.
0.33
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.79
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .00001
Maximum skewness among attributes of the numeric type.
30.04
Percentage of instances belonging to the least frequent class.
0
Percentage of numeric attributes.
Third quartile of means among attributes of the numeric type.
0.77
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.68
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.22
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .00001
Maximum standard deviation of attributes of the numeric type.
300413
Number of instances belonging to the least frequent class.
100
Percentage of nominal attributes.
0.02
Third quartile of mutual information between the nominal attributes and the target attribute.
0.24
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.27
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.45
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .00001
1.27
Average entropy of the attributes.
0.82
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes
0.72
First quartile of entropy among attributes.
Third quartile of skewness among attributes of the numeric type.
0.38
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.33
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.79
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .0001
Mean kurtosis among attributes of the numeric type.
0.22
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes
First quartile of kurtosis among attributes of the numeric type.
Third quartile of standard deviation of attributes of the numeric type.
0.77
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.68
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.22
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .0001
Mean of means among attributes of the numeric type.
0.02
Average mutual information between the nominal attributes and the target attribute.
0.45
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes
First quartile of means among attributes of the numeric type.
0.8
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.24
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.27
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.45
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .0001

13 tasks

21 runs - estimation_procedure: 10-fold Crossvalidation - evaluation_measure: predictive_accuracy - target_feature: class
0 runs - estimation_procedure: 33% Holdout set - evaluation_measure: predictive_accuracy - target_feature: class
0 runs - estimation_procedure: 10 times 10-fold Crossvalidation - evaluation_measure: predictive_accuracy - target_feature: class
0 runs - estimation_procedure: 5 times 2-fold Crossvalidation - evaluation_measure: predictive_accuracy - target_feature: class
0 runs - estimation_procedure: 10-fold Crossvalidation - evaluation_measure: precision - target_feature: class
0 runs - estimation_procedure: 10-fold Learning Curve - evaluation_measure: predictive_accuracy - target_feature: class
0 runs - estimation_procedure: 10-fold Learning Curve - target_feature: class
0 runs - estimation_procedure: 10-fold Learning Curve - target_feature: class
0 runs - estimation_procedure: 10-fold Learning Curve - target_feature: class
0 runs - estimation_procedure: 10-fold Learning Curve - target_feature: class
47 runs - estimation_procedure: Interleaved Test then Train - target_feature: class
Define a new task