Data
BNG(heart-h,nominal,1000000)

BNG(heart-h,nominal,1000000)

active ARFF Publicly available Visibility: public Uploaded 09-04-2014 by Jan van Rijn
0 likes downloaded by 2 people , 2 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit

14 features

num (target)nominal5 unique values
0 missing
agenominal3 unique values
0 missing
sexnominal2 unique values
0 missing
chest_painnominal4 unique values
0 missing
trestbpsnominal3 unique values
0 missing
cholnominal3 unique values
0 missing
fbsnominal2 unique values
0 missing
restecgnominal3 unique values
0 missing
thalachnominal3 unique values
0 missing
exangnominal2 unique values
0 missing
oldpeaknominal3 unique values
0 missing
slopenominal3 unique values
0 missing
canominal1 unique values
0 missing
thalnominal3 unique values
0 missing

107 properties

1000000
Number of instances (rows) of the dataset.
14
Number of attributes (columns) of the dataset.
5
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
0
Number of numeric attributes.
14
Number of nominal attributes.
12.15
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
3
Number of binary attributes.
0.01
First quartile of mutual information between the nominal attributes and the target attribute.
0.13
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.71
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.72
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.93
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .001
2.86
Average number of distinct values among the attributes of the nominal type.
First quartile of skewness among attributes of the numeric type.
0.72
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.93
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.95
Standard deviation of the number of distinct values among attributes of the nominal type.
0.13
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .001
Mean skewness among attributes of the numeric type.
First quartile of standard deviation of attributes of the numeric type.
0.94
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.14
Error rate achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.94
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk
0.72
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .001
Mean standard deviation of attributes of the numeric type.
0.85
Second quartile (Median) of entropy among attributes.
0.13
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.71
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.13
Error rate achieved by the landmarker weka.classifiers.lazy.IBk
63.49
Percentage of instances belonging to the most frequent class.
0
Minimal entropy among attributes.
Second quartile (Median) of kurtosis among attributes of the numeric type.
0.72
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.99
Entropy of the target attribute values.
0.72
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk
634862
Number of instances belonging to the most frequent class.
Minimum kurtosis among attributes of the numeric type.
Second quartile (Median) of means among attributes of the numeric type.
0.94
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.77
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump
1.7
Maximum entropy among attributes.
Minimum of means among attributes of the numeric type.
0.03
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
0.13
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.2
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump
Maximum kurtosis among attributes of the numeric type.
0
Minimal mutual information between the nominal attributes and the target attribute.
Second quartile (Median) of skewness among attributes of the numeric type.
0.72
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.56
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump
Maximum of means among attributes of the numeric type.
1
The minimal number of distinct values among attributes of the nominal type.
21.43
Percentage of binary attributes.
Second quartile (Median) of standard deviation of attributes of the numeric type.
0.93
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0
Number of attributes divided by the number of instances.
0.25
Maximum mutual information between the nominal attributes and the target attribute.
Minimum skewness among attributes of the numeric type.
0
Percentage of instances having missing values.
1.33
Third quartile of entropy among attributes.
0.13
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
14.92
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
5
The maximum number of distinct values among attributes of the nominal type.
Minimum standard deviation of attributes of the numeric type.
0
Percentage of missing values.
Third quartile of kurtosis among attributes of the numeric type.
0.53
Average class difference between consecutive instances.
0.72
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.93
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .00001
Maximum skewness among attributes of the numeric type.
0.17
Percentage of instances belonging to the least frequent class.
0
Percentage of numeric attributes.
Third quartile of means among attributes of the numeric type.
0.93
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.93
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.13
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .00001
Maximum standard deviation of attributes of the numeric type.
1659
Number of instances belonging to the least frequent class.
100
Percentage of nominal attributes.
0.09
Third quartile of mutual information between the nominal attributes and the target attribute.
0.14
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.13
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.72
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .00001
0.88
Average entropy of the attributes.
0.94
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes
0.4
First quartile of entropy among attributes.
Third quartile of skewness among attributes of the numeric type.
0.71
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.72
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.93
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .0001
Mean kurtosis among attributes of the numeric type.
0.13
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes
First quartile of kurtosis among attributes of the numeric type.
Third quartile of standard deviation of attributes of the numeric type.
0.93
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.93
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.13
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .0001
Mean of means among attributes of the numeric type.
0.07
Average mutual information between the nominal attributes and the target attribute.
0.71
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes
First quartile of means among attributes of the numeric type.
0.94
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.14
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.13
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.72
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .0001

8 tasks

20 runs - estimation_procedure: 10-fold Crossvalidation - evaluation_measure: predictive_accuracy - target_feature: num
0 runs - estimation_procedure: 33% Holdout set - evaluation_measure: predictive_accuracy - target_feature: num
0 runs - estimation_procedure: 10 times 10-fold Crossvalidation - evaluation_measure: predictive_accuracy - target_feature: num
0 runs - estimation_procedure: 5 times 2-fold Crossvalidation - evaluation_measure: predictive_accuracy - target_feature: num
0 runs - estimation_procedure: 10-fold Learning Curve - evaluation_measure: predictive_accuracy - target_feature: num
46 runs - estimation_procedure: Interleaved Test then Train - target_feature: num
Define a new task