Data
BNG(autos,1000,5)

BNG(autos,1000,5)

active ARFF public domain Visibility: public Uploaded 23-02-2015 by Jan van Rijn
0 likes downloaded by 4 people , 8 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit

26 features

symboling (target)nominal7 unique values
0 missing
normalized-lossesnumeric994442 unique values
0 missing
makenominal22 unique values
0 missing
fuel-typenominal2 unique values
0 missing
aspirationnominal2 unique values
0 missing
num-of-doorsnominal2 unique values
0 missing
body-stylenominal5 unique values
0 missing
drive-wheelsnominal3 unique values
0 missing
engine-locationnominal2 unique values
0 missing
wheel-basenumeric967757 unique values
0 missing
lengthnumeric986729 unique values
0 missing
widthnumeric926047 unique values
0 missing
heightnumeric942945 unique values
0 missing
curb-weightnumeric999710 unique values
0 missing
engine-typenominal7 unique values
0 missing
num-of-cylindersnominal7 unique values
0 missing
engine-sizenumeric994494 unique values
0 missing
fuel-systemnominal8 unique values
0 missing
borenumeric622774 unique values
0 missing
strokenumeric609443 unique values
0 missing
compression-rationumeric681814 unique values
0 missing
horsepowernumeric994953 unique values
0 missing
peak-rpmnumeric999466 unique values
0 missing
city-mpgnumeric972647 unique values
0 missing
highway-mpgnumeric976252 unique values
0 missing
pricenumeric999968 unique values
0 missing

107 properties

1000000
Number of instances (rows) of the dataset.
26
Number of attributes (columns) of the dataset.
7
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
15
Number of numeric attributes.
11
Number of nominal attributes.
0.69
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
177.5
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
22
The maximum number of distinct values among attributes of the nominal type.
-0.58
Minimum skewness among attributes of the numeric type.
0
Percentage of instances having missing values.
2.76
Third quartile of entropy among attributes.
0.23
Average class difference between consecutive instances.
0.11
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.6
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .00001
2.55
Maximum skewness among attributes of the numeric type.
0.27
Minimum standard deviation of attributes of the numeric type.
0
Percentage of missing values.
0.93
Third quartile of kurtosis among attributes of the numeric type.
174.46
Third quartile of means among attributes of the numeric type.
0.6
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.56
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.62
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .00001
8042.06
Maximum standard deviation of attributes of the numeric type.
0.24
Percentage of instances belonging to the least frequent class.
57.69
Percentage of numeric attributes.
0.02
Third quartile of mutual information between the nominal attributes and the target attribute.
0.62
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.69
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.19
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .00001
1.95
Average entropy of the attributes.
2441
Number of instances belonging to the least frequent class.
42.31
Percentage of nominal attributes.
1.19
Third quartile of skewness among attributes of the numeric type.
0.18
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.11
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.6
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .0001
0.83
Mean kurtosis among attributes of the numeric type.
0.66
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes
0.88
First quartile of entropy among attributes.
40.73
Third quartile of standard deviation of attributes of the numeric type.
0.6
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.56
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.62
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .0001
1474.34
Mean of means among attributes of the numeric type.
0.61
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes
-0.32
First quartile of kurtosis among attributes of the numeric type.
0.65
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.62
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.69
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.19
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .0001
0.01
Average mutual information between the nominal attributes and the target attribute.
0.15
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes
24.21
First quartile of means among attributes of the numeric type.
0.6
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.18
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.11
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.6
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .001
148.88
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
4
Number of binary attributes.
0.01
First quartile of mutual information between the nominal attributes and the target attribute.
0.19
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.6
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
5.8
Standard deviation of the number of distinct values among attributes of the nominal type.
0.62
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .001
6.09
Average number of distinct values among the attributes of the nominal type.
0.12
First quartile of skewness among attributes of the numeric type.
0.65
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.62
Error rate achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.57
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk
0.19
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .001
0.75
Mean skewness among attributes of the numeric type.
2.46
First quartile of standard deviation of attributes of the numeric type.
0.6
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.18
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.66
Error rate achieved by the landmarker weka.classifiers.lazy.IBk
32.36
Percentage of instances belonging to the most frequent class.
617.8
Mean standard deviation of attributes of the numeric type.
1.85
Second quartile (Median) of entropy among attributes.
0.19
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 2
2.3
Entropy of the target attribute values.
0.15
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk
323554
Number of instances belonging to the most frequent class.
0.51
Minimal entropy among attributes.
0.19
Second quartile (Median) of kurtosis among attributes of the numeric type.
0.65
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.53
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump
4.44
Maximum entropy among attributes.
-0.98
Minimum kurtosis among attributes of the numeric type.
98.94
Second quartile (Median) of means among attributes of the numeric type.
0.6
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.68
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump
7.39
Maximum kurtosis among attributes of the numeric type.
3.25
Minimum of means among attributes of the numeric type.
0.01
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
0.19
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump
13616.61
Maximum of means among attributes of the numeric type.
0
Minimal mutual information between the nominal attributes and the target attribute.
0.66
Second quartile (Median) of skewness among attributes of the numeric type.
0.56
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0
Number of attributes divided by the number of instances.
0.04
Maximum mutual information between the nominal attributes and the target attribute.
2
The minimal number of distinct values among attributes of the nominal type.
15.38
Percentage of binary attributes.
6.57
Second quartile (Median) of standard deviation of attributes of the numeric type.

5 tasks

0 runs - estimation_procedure: 33% Holdout set - target_feature: symboling
33 runs - estimation_procedure: Interleaved Test then Train - target_feature: symboling
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task