Data
ldpa

ldpa

active ARFF Publicly available Visibility: public Uploaded 22-05-2015 by Rafael G. Mantovani
0 likes downloaded by 4 people , 7 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Author: Source: UCI Please cite: B. Kaluza, V. Mirchevska, E. Dovgan, M. Lustrek, M. Gams, An Agent-based Approach to Care in Independent Living, International Joint Conference on Ambient Intelligence (AmI-10), Malaga, Spain, In press Dataset Title: Localization Data for Person Activity Data Set Abstract: Data contains recordings of five people performing different activities. Each person wore four sensors (tags) while performing the same scenario five times. Source: - Creators: Mitja Lustrek (mitja.lustrek '@' ijs.si), Bostjan Kaluza (bostjan.kaluza '@' ijs.si), Rok Piltaver (rok.piltaver '@' ijs.si), Jana Krivec (jana.krivec '@' ijs.si), Vedrana Vidulin (vedrana.vidulin '@' ijs.si) - Jozef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenija - Donor: Bozidara Cvetkovic (boza.cvetkovic '@' ijs.si) - Jozef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenija - Date received: October, 2010 Data Set Information: People used for recording of the data were wearing four tags (ankle left, ankle right, belt and chest). Each instance is a localization data for one of the tags. The tag can be identified by one of the attributes. Attribute Information: Instance example: A01,020-000-033-111,633790226057226795,27.05.2009 14:03:25:723,4.292500972747803,2.0738532543182373,1.36650812625885,walking 1) Sequence Name {A01,A02,A03,A04,A05,B01,B02,B03,B04,B05,C01,C02,C03,C04,C05,D01,D02,D03,D04,D05,E01,E02,E03,E04,E05} (Nominal) - A, B, C, D, E = 5 people 2) Tag identificator {010-000-024-033,020-000-033-111,020-000-032-221,010-000-030-096} (Nominal) - ANKLE_LEFT = 010-000-024-033 - ANKLE_RIGHT = 010-000-030-096 - CHEST = 020-000-033-111 - BELT = 020-000-032-221 3) timestamp (Numeric) all unique 4) date FORMAT = dd.MM.yyyy HH:mm:ss:SSS (Date) 5) x coordinate of the tag (Numeric) 6) y coordinate of the tag (Numeric) 7) z coordinate of the tag (Numeric) 8) activity {walking,falling,'lying down',lying,'sitting down',sitting,'standing up from lying','on all fours','sitting on the ground','standing up from sitting','standing up from sitting on the ground'} (Nominal) Relevant Papers: B. Kaluza, V. Mirchevska, E. Dovgan, M. Lustrek, M. Gams, An Agent-based Approach to Care in Independent Living, International Joint Conference on Ambient Intelligence (AmI-10), Malaga, Spain, In press

8 features

Class (target)nominal11 unique values
0 missing
V1nominal5 unique values
0 missing
V2nominal4 unique values
0 missing
V3numeric164859 unique values
0 missing
V4numeric164834 unique values
0 missing
V5numeric163802 unique values
0 missing
V6numeric163689 unique values
0 missing
V7numeric164482 unique values
0 missing

19 properties

164860
Number of instances (rows) of the dataset.
8
Number of attributes (columns) of the dataset.
11
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
5
Number of numeric attributes.
3
Number of nominal attributes.
0
Number of attributes divided by the number of instances.
62.5
Percentage of numeric attributes.
33.05
Percentage of instances belonging to the most frequent class.
37.5
Percentage of nominal attributes.
54480
Number of instances belonging to the most frequent class.
0.84
Percentage of instances belonging to the least frequent class.
1381
Number of instances belonging to the least frequent class.
0
Number of binary attributes.
0
Percentage of binary attributes.
0
Percentage of instances having missing values.
1
Average class difference between consecutive instances.
0
Percentage of missing values.

5 tasks

6 runs - estimation_procedure: 10-fold Crossvalidation - evaluation_measure: predictive_accuracy - target_feature: Class
0 runs - estimation_procedure: 10-fold Crossvalidation - target_feature: Class
0 runs - estimation_procedure: 33% Holdout set - evaluation_measure: predictive_accuracy - target_feature: Class
Define a new task