Data
ringnorm

ringnorm

active ARFF Publicly available Visibility: public Uploaded 25-05-2015 by Rafael Gomes Mantovani
0 likes downloaded by 9 people , 10 total downloads 0 issues 0 downvotes
  • artificial study_52 study_7 study_236
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Author: Michael Revow Source: http://www.cs.toronto.edu/~delve/data/ringnorm/desc.html Please cite: 1: Abstract: This is a 20 dimensional, 2 class classification problem. Each class is drawn from a multivariate normal distribution. Class 1 has mean zero and covariance 4 times the identity. Class 2 has mean (a,a,..a) and unit covariance. a = 2/sqrt(20). 2: Data set description. This is an implementation of Leo Breiman's ringnorm example[1]. It is a 20 dimensional, 2 class classification example. Each class is drawn from a multivariate normal distribution. Class 1 has mean zero and covariance 4 times the identity. Class 2 has mean (a,a,..a) and unit covariance. a = 2/sqrt(20). Breiman reports the theoretical expected misclassification rate as 1.3%. He used 300 training examples with CART and found an error of 21.4%. - Type. Classification - Origin. Laboratory - Instances. 7400 - Features. 20 - Classes. 2 - Missing values. No 3: Attributes information @relation ring @attribute A1 real [-6879.0, 6285.0] @attribute A2 real [-7141.0, 6921.0] @attribute A3 real [-7734.0, 7611.0] @attribute A4 real [-6627.0, 7149.0] @attribute A5 real [-7184.0, 6383.0] @attribute A6 real [-6946.0, 6743.0] @attribute A7 real [-7781.0, 6285.0] @attribute A8 real [-6882.0, 6357.0] @attribute A9 real [-7184.0, 7487.0] @attribute A10 real [-7232.0, 6757.0] @attribute A11 real [-7803.0, 7208.0] @attribute A12 real [-7395.0, 6791.0] @attribute A13 real [-7096.0, 6403.0] @attribute A14 real [-7472.0, 7261.0] @attribute A15 real [-7342.0, 7372.0] @attribute A16 real [-7121.0, 6905.0] @attribute A17 real [-7163.0, 7175.0] @attribute A18 real [-8778.0, 6896.0] @attribute A19 real [-7554.0, 5726.0] @attribute A20 real [-6722.0, 7627.0] @attribute Class {0, 1} @inputs A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20 @outputs Class

21 features

Class (target)nominal2 unique values
0 missing
V1numeric3739 unique values
0 missing
V2numeric3779 unique values
0 missing
V3numeric3807 unique values
0 missing
V4numeric3757 unique values
0 missing
V5numeric3760 unique values
0 missing
V6numeric3774 unique values
0 missing
V7numeric3764 unique values
0 missing
V8numeric3695 unique values
0 missing
V9numeric3765 unique values
0 missing
V10numeric3755 unique values
0 missing
V11numeric3786 unique values
0 missing
V12numeric3756 unique values
0 missing
V13numeric3751 unique values
0 missing
V14numeric3746 unique values
0 missing
V15numeric3745 unique values
0 missing
V16numeric3797 unique values
0 missing
V17numeric3725 unique values
0 missing
V18numeric3787 unique values
0 missing
V19numeric3742 unique values
0 missing
V20numeric3685 unique values
0 missing

19 properties

7400
Number of instances (rows) of the dataset.
21
Number of attributes (columns) of the dataset.
2
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
20
Number of numeric attributes.
1
Number of nominal attributes.
0
Percentage of instances having missing values.
0
Percentage of missing values.
0.5
Average class difference between consecutive instances.
95.24
Percentage of numeric attributes.
0
Number of attributes divided by the number of instances.
4.76
Percentage of nominal attributes.
50.49
Percentage of instances belonging to the most frequent class.
3736
Number of instances belonging to the most frequent class.
49.51
Percentage of instances belonging to the least frequent class.
3664
Number of instances belonging to the least frequent class.
1
Number of binary attributes.
4.76
Percentage of binary attributes.

14 tasks

89 runs - estimation_procedure: 10-fold Crossvalidation - evaluation_measure: predictive_accuracy - target_feature: Class
31 runs - estimation_procedure: 10-fold Crossvalidation - target_feature: Class
0 runs - estimation_procedure: 33% Holdout set - evaluation_measure: predictive_accuracy - target_feature: Class
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task