{ "data_id": "15", "name": "breast-w", "exact_name": "breast-w", "version": 1, "version_label": "1", "description": "**Author**: Dr. William H. Wolberg, University of Wisconsin \n**Source**: [UCI](https:\/\/archive.ics.uci.edu\/ml\/datasets\/breast+cancer+wisconsin+(original)), [University of Wisconsin](http:\/\/pages.cs.wisc.edu\/~olvi\/uwmp\/cancer.html) - 1992-07-15 \n**Please cite**: Dr. William H. Wolberg, University of Wisconsin Hospitals, Madison + (See below) \n\n**Breast Cancer Wisconsin (Original) Data Set.** Features are computed from a digitized image of a fine needle aspirate (FNA) of a breast mass. They describe characteristics of the cell nuclei present in the image. The target feature records the prognosis (malignant or benign). [Original data available here](ftp:\/\/ftp.cs.wisc.edu\/math-prog\/cpo-dataset\/machine-learn\/cancer\/) \n\nCurrent dataset was adapted to ARFF format from the UCI version. Sample code ID's were removed. \n\n! Note that there is also a related Breast Cancer Wisconsin (Diagnosis) Data Set with a different set of features, better known as [wdbc](https:\/\/www.openml.org\/d\/1510).\n\n### Data Set Information:\n\nSamples arrive periodically as Dr. Wolberg reports his clinical cases. The database therefore reflects this chronological grouping of the data. This grouping information appears immediately below, having been removed from the data itself:\n\nGroup 1: 367 instances (January 1989)\nGroup 2: 70 instances (October 1989)\nGroup 3: 31 instances (February 1990)\nGroup 4: 17 instances (April 1990)\nGroup 5: 48 instances (August 1990)\nGroup 6: 49 instances (Updated January 1991)\nGroup 7: 31 instances (June 1991)\nGroup 8: 86 instances (November 1991)\n-----------------------------------------\nTotal: 699 points (as of the donated datbase on 15 July 1992)\n\nNote that the results summarized above in Past Usage refer to a dataset of size 369, while Group 1 has only 367 instances. This is because it originally contained 369 instances; 2 were removed. The following statements summarizes changes to the original Group 1's set of data:\n\n##### Group 1 : 367 points: 200B 167M (January 1989)\n\n##### Revised Jan 10, 1991: Replaced zero bare nuclei in 1080185 & 1187805\n\n##### Revised Nov 22,1991: Removed 765878,4,5,9,7,10,10,10,3,8,1 no record\n##### : Removed 484201,2,7,8,8,4,3,10,3,4,1 zero epithelial\n##### : Changed 0 to 1 in field 6 of sample 1219406\n##### : Changed 0 to 1 in field 8 of following sample:\n##### : 1182404,2,3,1,1,1,2,0,1,1,1\n\n### Attribute Information:\n\n1. Sample code number: id number\n2. Clump Thickness: 1 - 10\n3. Uniformity of Cell Size: 1 - 10\n4. Uniformity of Cell Shape: 1 - 10\n5. Marginal Adhesion: 1 - 10\n6. Single Epithelial Cell Size: 1 - 10\n7. Bare Nuclei: 1 - 10\n8. Bland Chromatin: 1 - 10\n9. Normal Nucleoli: 1 - 10\n10. Mitoses: 1 - 10\n11. Class: (2 for benign, 4 for malignant)\n\n### Relevant Papers \n\nW.N. Street, W.H. Wolberg and O.L. Mangasarian. Nuclear feature extraction for breast tumor diagnosis. IS&T\/SPIE 1993 International Symposium on Electronic Imaging: Science and Technology, volume 1905, pages 861-870, San Jose, CA, 1993. \n\nO.L. Mangasarian, W.N. Street and W.H. Wolberg. Breast cancer diagnosis and prognosis via linear programming. Operations Research, 43(4), pages 570-577, July-August 1995. \n\n### Citation request \n\nThis breast cancer database was obtained from the University of Wisconsin Hospitals, Madison from Dr. William H. Wolberg. If you publish results when using this database, then please include this information in your acknowledgments. Also, please cite one or more of:\n\n 1. O. L. Mangasarian and W. H. Wolberg: \"Cancer diagnosis via linear \n programming\", SIAM News, Volume 23, Number 5, September 1990, pp 1 & 18.\n\n 2. William H. Wolberg and O.L. Mangasarian: \"Multisurface method of \n pattern separation for medical diagnosis applied to breast cytology\", \n Proceedings of the National Academy of Sciences, U.S.A., Volume 87, \n December 1990, pp 9193-9196.\n\n 3. O. L. Mangasarian, R. Setiono, and W.H. Wolberg: \"Pattern recognition \n via linear programming: Theory and application to medical diagnosis\", \n in: \"Large-scale numerical optimization\", Thomas F. Coleman and Yuying\n Li, editors, SIAM Publications, Philadelphia 1990, pp 22-30.\n\n 4. K. P. Bennett & O. L. Mangasarian: \"Robust linear programming \n discrimination of two linearly inseparable sets\", Optimization Methods\n and Software 1, 1992, 23-34 (Gordon & Breach Science Publishers).", "format": "ARFF", "uploader": "Jan van Rijn", "uploader_id": 1, "visibility": "public", "creator": "Dr. William H. Wolberg", "contributor": "Olvi Mangasarian", "date": "2014-04-06 23:20:20", "update_comment": "added special attributes", "last_update": "2014-09-21 23:04:47", "licence": "Public", "status": "active", "error_message": null, "url": "https:\/\/www.openml.org\/data\/download\/52350\/openml_phpJNxH0q", "default_target_attribute": "Class", "row_id_attribute": null, "ignore_attribute": null, "runs": 28321, "suggest": { "input": [ "breast-w", "Current dataset was adapted to ARFF format from the UCI version. Sample code ID's were removed. ! Note that there is also a related Breast Cancer Wisconsin (Diagnosis) Data Set with a different set of features, better known as [wdbc](https:\/\/www.openml.org\/d\/1510). ### Data Set Information: Samples arrive periodically as Dr. Wolberg reports his clinical cases. The database therefore reflects this chronological grouping of the data. This grouping information appears immediately below, having been " ], "weight": 5 }, "qualities": { "NumberOfInstances": 699, "NumberOfFeatures": 10, "NumberOfClasses": 2, "NumberOfMissingValues": 16, "NumberOfInstancesWithMissingValues": 16, "NumberOfNumericFeatures": 9, "NumberOfSymbolicFeatures": 1, "Quartile2MeansOfNumericAtts": 3.2074391988555093, "REPTreeDepth3AUC": 0.952780445378608, "DecisionStumpAUC": 0.9249080432694923, "MaxAttributeEntropy": null, "MinKurtosisOfNumericAtts": -0.7988441354436415, "Quartile2MutualInformation": null, "REPTreeDepth3ErrRate": 0.055793991416309016, "DecisionStumpErrRate": 0.08869814020028613, "MaxKurtosisOfNumericAtts": 12.6578780670256, "MinMeansOfNumericAtts": 1.589413447782546, "Quartile2SkewnessOfNumericAtts": 1.233136557961704, "REPTreeDepth3Kappa": 0.8756551129599474, "DecisionStumpKappa": 0.8107527445175151, "MaxMeansOfNumericAtts": 4.417739628040058, "MinMutualInformation": null, "Quartile2StdDevOfNumericAtts": 2.85537923921701, "RandomTreeDepth1AUC": 0.9516904855835366, "Dimensionality": 0.01430615164520744, "MaxMutualInformation": null, "MinNominalAttDistinctValues": 2, "PercentageOfBinaryFeatures": 10, "Quartile3AttributeEntropy": null, "RandomTreeDepth1ErrRate": 0.044349070100143065, "EquivalentNumberOfAtts": null, "MaxNominalAttDistinctValues": 2, "MinSkewnessOfNumericAtts": 0.5928585326862892, "PercentageOfInstancesWithMissingValues": 2.28898426323319, "Quartile3KurtosisOfNumericAtts": 1.57850674634774, "AutoCorrelation": 0.6318051575931232, "RandomTreeDepth1Kappa": 0.9017452695441621, "J48.00001.AUC": 0.9269600826251608, "MaxSkewnessOfNumericAtts": 3.560657844495268, "MinStdDevOfNumericAtts": 1.7150779425067932, "PercentageOfMissingValues": 0.22889842632331905, "Quartile3MeansOfNumericAtts": 3.49121208503258, "CfsSubsetEval_DecisionStumpAUC": 0.9269600826251608, "RandomTreeDepth2AUC": 0.9516904855835366, "J48.00001.ErrRate": 0.055793991416309016, "MaxStdDevOfNumericAtts": 3.643857160492903, "MinorityClassPercentage": 34.47782546494993, "PercentageOfNumericFeatures": 90, "Quartile3MutualInformation": null, "CfsSubsetEval_DecisionStumpErrRate": 0.055793991416309016, "RandomTreeDepth2ErrRate": 0.044349070100143065, "J48.00001.Kappa": 0.876873811577773, "MeanAttributeEntropy": null, "MinorityClassSize": 241, "PercentageOfSymbolicFeatures": 10, "Quartile3SkewnessOfNumericAtts": 1.618319946298536, "CfsSubsetEval_DecisionStumpKappa": 0.876873811577773, "RandomTreeDepth2Kappa": 0.9017452695441621, "J48.0001.AUC": 0.9269600826251608, "MeanKurtosisOfNumericAtts": 1.6841150960407236, "NaiveBayesAUC": 0.9883078465880973, "Quartile1AttributeEntropy": null, "Quartile3StdDevOfNumericAtts": 3.0525465017834734, "CfsSubsetEval_NaiveBayesAUC": 0.9269600826251608, "RandomTreeDepth3AUC": 0.9516904855835366, "J48.0001.ErrRate": 0.055793991416309016, "MeanMeansOfNumericAtts": 3.1357041002822355, "NaiveBayesErrRate": 0.04005722460658083, "Quartile1KurtosisOfNumericAtts": -0.3083522161398966, "REPTreeDepth1AUC": 0.952780445378608, "CfsSubsetEval_NaiveBayesErrRate": 0.055793991416309016, "RandomTreeDepth3ErrRate": 0.044349070100143065, "J48.0001.Kappa": 0.876873811577773, "MeanMutualInformation": null, "NaiveBayesKappa": 0.9125445722405428, "Quartile1MeansOfNumericAtts": 2.836909871244634, "REPTreeDepth1ErrRate": 0.055793991416309016, "CfsSubsetEval_NaiveBayesKappa": 0.876873811577773, "RandomTreeDepth3Kappa": 0.9017452695441621, "J48.001.AUC": 0.9269600826251608, "MeanNoiseToSignalRatio": null, "NumberOfBinaryFeatures": 1, "Quartile1MutualInformation": null, "Quartile1SkewnessOfNumericAtts": 1.0449923682055797, "REPTreeDepth1Kappa": 0.8756551129599474, "CfsSubsetEval_kNN1NAUC": 0.9269600826251608, "StdvNominalAttDistinctValues": 0, "J48.001.ErrRate": 0.055793991416309016, "MeanNominalAttDistinctValues": 2, "Quartile1StdDevOfNumericAtts": 2.3263320694866376, "REPTreeDepth2AUC": 0.952780445378608, "CfsSubsetEval_kNN1NErrRate": 0.055793991416309016, "kNN1NAUC": 0.9752215115330954, "J48.001.Kappa": 0.876873811577773, "MeanSkewnessOfNumericAtts": 1.477488666731089, "Quartile2AttributeEntropy": null, "REPTreeDepth2ErrRate": 0.055793991416309016, "CfsSubsetEval_kNN1NKappa": 0.876873811577773, "kNN1NErrRate": 0.04291845493562232, "MajorityClassPercentage": 65.52217453505007, "MeanStdDevOfNumericAtts": 2.7510805456186183, "Quartile2KurtosisOfNumericAtts": 0.18462131150511896, "REPTreeDepth2Kappa": 0.8756551129599474, "ClassEntropy": 0.9293179372497983, "kNN1NKappa": 0.9044446672195541, "MajorityClassSize": 458, "MinAttributeEntropy": null }, "tags": [ { "tag": "cancer", "uploader": "2" }, { "tag": "medical", "uploader": "2" }, { "tag": "mythbusting_1", "uploader": "1" }, { "tag": "OpenML-CC18", "uploader": "1" }, { "tag": "OpenML100", "uploader": "348" }, { "tag": "study_1", "uploader": "2" }, { "tag": "study_123", "uploader": "3886" }, { "tag": "study_135", "uploader": "5824" }, { "tag": "study_14", "uploader": "64" }, { "tag": "study_15", "uploader": "939" }, { "tag": "study_20", "uploader": "939" }, { "tag": "study_34", "uploader": "1" }, { "tag": "study_37", "uploader": "1" }, { "tag": "study_41", "uploader": "1" }, { "tag": "study_50", "uploader": "64" }, { "tag": "study_52", "uploader": "64" }, { "tag": "study_70", "uploader": "1856" }, { "tag": "study_98", "uploader": "1935" }, { "tag": "study_99", "uploader": "1" }, { "tag": "uci", "uploader": "1" }, { "tag": "study_216", "uploader": "0" }, { "tag": "study_217", "uploader": "0" }, { "tag": "study_253", "uploader": "0" }, { "tag": "study_268", "uploader": "0" }, { "tag": "study_234", "uploader": "0" } ], "features": [ { "name": "Class", "index": "9", "type": "nominal", "distinct": "2", "missing": "0", "target": "1", "distr": [ [ "benign", "malignant" ], [ [ "458", "0" ], [ "0", "241" ] ] ] }, { "name": "Clump_Thickness", "index": "0", "type": "numeric", "distinct": "10", "missing": "0", "min": "1", "max": "10", "mean": "4", "stdev": "3" }, { "name": "Cell_Size_Uniformity", "index": "1", "type": "numeric", "distinct": "10", "missing": "0", "min": "1", "max": "10", "mean": "3", "stdev": "3" }, { "name": "Cell_Shape_Uniformity", "index": "2", "type": "numeric", "distinct": "10", "missing": "0", "min": "1", "max": "10", "mean": "3", "stdev": "3" }, { "name": "Marginal_Adhesion", "index": "3", "type": "numeric", "distinct": "10", "missing": "0", "min": "1", "max": "10", "mean": "3", "stdev": "3" }, { "name": "Single_Epi_Cell_Size", "index": "4", "type": "numeric", "distinct": "10", "missing": "0", "min": "1", "max": "10", "mean": "3", "stdev": "2" }, { "name": "Bare_Nuclei", "index": "5", "type": "numeric", "distinct": "10", "missing": "16", "min": "1", "max": "10", "mean": "4", "stdev": "4" }, { "name": "Bland_Chromatin", "index": "6", "type": "numeric", "distinct": "10", "missing": "0", "min": "1", "max": "10", "mean": "3", "stdev": "2" }, { "name": "Normal_Nucleoli", "index": "7", "type": "numeric", "distinct": "10", "missing": "0", "min": "1", "max": "10", "mean": "3", "stdev": "3" }, { "name": "Mitoses", "index": "8", "type": "numeric", "distinct": "9", "missing": "0", "min": "1", "max": "10", "mean": "2", "stdev": "2" } ], "nr_of_issues": 0, "nr_of_downvotes": 0, "nr_of_likes": 1, "nr_of_downloads": 20, "total_downloads": 28, "reach": 21, "reuse": 9, "impact_of_reuse": 0, "reach_of_reuse": 0, "impact": 9 }