Data
cardiotocography

cardiotocography

active ARFF Publicly available Visibility: public Uploaded 01-06-2015 by Rafael G. Mantovani
0 likes downloaded by 13 people , 15 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Author: J. P. Marques de Sá, J. Bernardes, D. Ayers de Campos. Source: [original](http://www.openml.org/d/1466) - UCI Please cite: A 3-class version of Cardiotocography dataset.

36 features

Class (target)nominal3 unique values
0 missing
V1numeric48 unique values
0 missing
V2numeric979 unique values
0 missing
V3numeric1064 unique values
0 missing
V4numeric48 unique values
0 missing
V5numeric48 unique values
0 missing
V6numeric22 unique values
0 missing
V7numeric96 unique values
0 missing
V8numeric19 unique values
0 missing
V9numeric75 unique values
0 missing
V10numeric57 unique values
0 missing
V11numeric87 unique values
0 missing
V12numeric249 unique values
0 missing
V13numeric15 unique values
0 missing
V14numeric2 unique values
0 missing
V15numeric5 unique values
0 missing
V16numeric154 unique values
0 missing
V17numeric109 unique values
0 missing
V18numeric86 unique values
0 missing
V19numeric18 unique values
0 missing
V20numeric9 unique values
0 missing
V21numeric88 unique values
0 missing
V22numeric103 unique values
0 missing
V23numeric95 unique values
0 missing
V24numeric133 unique values
0 missing
V25numeric3 unique values
0 missing
V26numeric2 unique values
0 missing
V27numeric2 unique values
0 missing
V28numeric2 unique values
0 missing
V29numeric2 unique values
0 missing
V30numeric2 unique values
0 missing
V31numeric2 unique values
0 missing
V32numeric2 unique values
0 missing
V33numeric2 unique values
0 missing
V34numeric2 unique values
0 missing
V35numeric2 unique values
0 missing

62 properties

2126
Number of instances (rows) of the dataset.
36
Number of attributes (columns) of the dataset.
3
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
35
Number of numeric attributes.
1
Number of nominal attributes.
Average mutual information between the nominal attributes and the target attribute.
0.36
First quartile of standard deviation of attributes of the numeric type.
0.87
Average class difference between consecutive instances.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
0.97
Entropy of the target attribute values.
3
Average number of distinct values among the attributes of the nominal type.
3.01
Second quartile (Median) of kurtosis among attributes of the numeric type.
0.02
Number of attributes divided by the number of instances.
2.39
Mean skewness among attributes of the numeric type.
3.66
Second quartile (Median) of means among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
60.5
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
77.85
Percentage of instances belonging to the most frequent class.
Minimal entropy among attributes.
1.66
Second quartile (Median) of skewness among attributes of the numeric type.
1655
Number of instances belonging to the most frequent class.
-1.37
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
2.95
Second quartile (Median) of standard deviation of attributes of the numeric type.
Maximum entropy among attributes.
0
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
299.42
Maximum kurtosis among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
15.13
Third quartile of kurtosis among attributes of the numeric type.
1702.88
Maximum of means among attributes of the numeric type.
3
The minimal number of distinct values among attributes of the nominal type.
97.22
Percentage of numeric attributes.
93.58
Third quartile of means among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
3
The maximum number of distinct values among attributes of the nominal type.
-1
Minimum skewness among attributes of the numeric type.
2.78
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
17.35
Maximum skewness among attributes of the numeric type.
0.06
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
3.92
Third quartile of skewness among attributes of the numeric type.
930.92
Maximum standard deviation of attributes of the numeric type.
8.28
Percentage of instances belonging to the least frequent class.
-0.29
First quartile of kurtosis among attributes of the numeric type.
17.19
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
176
Number of instances belonging to the least frequent class.
0.13
First quartile of means among attributes of the numeric type.
0
Standard deviation of the number of distinct values among attributes of the nominal type.
17.74
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
106.21
Mean of means among attributes of the numeric type.
0.12
First quartile of skewness among attributes of the numeric type.

6 tasks

103 runs - estimation_procedure: 10-fold Crossvalidation - evaluation_measure: predictive_accuracy - target_feature: Class
31 runs - estimation_procedure: 10-fold Crossvalidation - target_feature: Class
0 runs - estimation_procedure: 33% Holdout set - evaluation_measure: predictive_accuracy - target_feature: Class
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task