Data
hill-valley

hill-valley

active ARFF Publicly available Visibility: public Uploaded 01-06-2015 by Rafael G. Mantovani
0 likes downloaded by 8 people , 9 total downloads 1 issues 1 downvotes
  • artificial derived study_52 study_7 whyme'
Issue #Downvotes for this reason By
Missing default_target_attribute1User 4095


Loading wiki
Help us complete this description Edit
Author: Lee Graham, Franz Oppacher Source: [original](http://www.openml.org/d/1479) - UCI Please cite: * Dataset: Hill valley dataset. A noiseless version of the data set.

101 features

Class (target)nominal2 unique values
0 missing
V1numeric1212 unique values
0 missing
V2numeric1212 unique values
0 missing
V3numeric1212 unique values
0 missing
V4numeric1212 unique values
0 missing
V5numeric1212 unique values
0 missing
V6numeric1212 unique values
0 missing
V7numeric1212 unique values
0 missing
V8numeric1212 unique values
0 missing
V9numeric1212 unique values
0 missing
V10numeric1212 unique values
0 missing
V11numeric1212 unique values
0 missing
V12numeric1212 unique values
0 missing
V13numeric1212 unique values
0 missing
V14numeric1212 unique values
0 missing
V15numeric1212 unique values
0 missing
V16numeric1212 unique values
0 missing
V17numeric1212 unique values
0 missing
V18numeric1212 unique values
0 missing
V19numeric1212 unique values
0 missing
V20numeric1212 unique values
0 missing
V21numeric1212 unique values
0 missing
V22numeric1212 unique values
0 missing
V23numeric1212 unique values
0 missing
V24numeric1212 unique values
0 missing
V25numeric1212 unique values
0 missing
V26numeric1212 unique values
0 missing
V27numeric1212 unique values
0 missing
V28numeric1212 unique values
0 missing
V29numeric1212 unique values
0 missing
V30numeric1212 unique values
0 missing
V31numeric1212 unique values
0 missing
V32numeric1212 unique values
0 missing
V33numeric1212 unique values
0 missing
V34numeric1212 unique values
0 missing
V35numeric1212 unique values
0 missing
V36numeric1212 unique values
0 missing
V37numeric1212 unique values
0 missing
V38numeric1212 unique values
0 missing
V39numeric1212 unique values
0 missing
V40numeric1212 unique values
0 missing
V41numeric1212 unique values
0 missing
V42numeric1212 unique values
0 missing
V43numeric1212 unique values
0 missing
V44numeric1212 unique values
0 missing
V45numeric1212 unique values
0 missing
V46numeric1212 unique values
0 missing
V47numeric1212 unique values
0 missing
V48numeric1212 unique values
0 missing
V49numeric1212 unique values
0 missing
V50numeric1212 unique values
0 missing
V51numeric1212 unique values
0 missing
V52numeric1212 unique values
0 missing
V53numeric1212 unique values
0 missing
V54numeric1212 unique values
0 missing
V55numeric1212 unique values
0 missing
V56numeric1212 unique values
0 missing
V57numeric1212 unique values
0 missing
V58numeric1212 unique values
0 missing
V59numeric1212 unique values
0 missing
V60numeric1212 unique values
0 missing
V61numeric1212 unique values
0 missing
V62numeric1212 unique values
0 missing
V63numeric1212 unique values
0 missing
V64numeric1212 unique values
0 missing
V65numeric1212 unique values
0 missing
V66numeric1212 unique values
0 missing
V67numeric1212 unique values
0 missing
V68numeric1212 unique values
0 missing
V69numeric1212 unique values
0 missing
V70numeric1212 unique values
0 missing
V71numeric1212 unique values
0 missing
V72numeric1212 unique values
0 missing
V73numeric1212 unique values
0 missing
V74numeric1212 unique values
0 missing
V75numeric1212 unique values
0 missing
V76numeric1212 unique values
0 missing
V77numeric1212 unique values
0 missing
V78numeric1212 unique values
0 missing
V79numeric1212 unique values
0 missing
V80numeric1212 unique values
0 missing
V81numeric1212 unique values
0 missing
V82numeric1212 unique values
0 missing
V83numeric1212 unique values
0 missing
V84numeric1212 unique values
0 missing
V85numeric1212 unique values
0 missing
V86numeric1212 unique values
0 missing
V87numeric1211 unique values
0 missing
V88numeric1212 unique values
0 missing
V89numeric1212 unique values
0 missing
V90numeric1212 unique values
0 missing
V91numeric1212 unique values
0 missing
V92numeric1212 unique values
0 missing
V93numeric1212 unique values
0 missing
V94numeric1212 unique values
0 missing
V95numeric1212 unique values
0 missing
V96numeric1212 unique values
0 missing
V97numeric1212 unique values
0 missing
V98numeric1212 unique values
0 missing
V99numeric1212 unique values
0 missing
V100numeric1212 unique values
0 missing

62 properties

1212
Number of instances (rows) of the dataset.
101
Number of attributes (columns) of the dataset.
2
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
100
Number of numeric attributes.
1
Number of nominal attributes.
11.01
Mean kurtosis among attributes of the numeric type.
1
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
8189.42
Mean of means among attributes of the numeric type.
3.2
First quartile of skewness among attributes of the numeric type.
Average mutual information between the nominal attributes and the target attribute.
19409.31
First quartile of standard deviation of attributes of the numeric type.
0.5
Average class difference between consecutive instances.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
1
Entropy of the target attribute values.
2
Average number of distinct values among the attributes of the nominal type.
10.77
Second quartile (Median) of kurtosis among attributes of the numeric type.
0.08
Number of attributes divided by the number of instances.
3.24
Mean skewness among attributes of the numeric type.
8200.09
Second quartile (Median) of means among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
50.5
Percentage of instances belonging to the most frequent class.
19481.35
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
612
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
3.22
Second quartile (Median) of skewness among attributes of the numeric type.
Maximum entropy among attributes.
10.51
Minimum kurtosis among attributes of the numeric type.
0.99
Percentage of binary attributes.
19489.25
Second quartile (Median) of standard deviation of attributes of the numeric type.
12.67
Maximum kurtosis among attributes of the numeric type.
8113.48
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
8245.6
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
11.21
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
2
The minimal number of distinct values among attributes of the nominal type.
99.01
Percentage of numeric attributes.
8212.04
Third quartile of means among attributes of the numeric type.
2
The maximum number of distinct values among attributes of the nominal type.
3.19
Minimum skewness among attributes of the numeric type.
0.99
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
3.38
Maximum skewness among attributes of the numeric type.
19223.18
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
3.26
Third quartile of skewness among attributes of the numeric type.
19788.64
Maximum standard deviation of attributes of the numeric type.
49.5
Percentage of instances belonging to the least frequent class.
10.66
First quartile of kurtosis among attributes of the numeric type.
19557.17
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
600
Number of instances belonging to the least frequent class.
8168.31
First quartile of means among attributes of the numeric type.
0
Standard deviation of the number of distinct values among attributes of the nominal type.

7 tasks

86 runs - estimation_procedure: 10-fold Crossvalidation - evaluation_measure: predictive_accuracy - target_feature: Class
31 runs - estimation_procedure: 10-fold Crossvalidation - target_feature: Class
0 runs - estimation_procedure: 33% Holdout set - target_feature: Class
0 runs - estimation_procedure: 10 times 10-fold Crossvalidation - target_feature: Class
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task