Data
breastTumor

breastTumor

active ARFF Publicly available Visibility: public Uploaded 23-04-2014 by Jan van Rijn
0 likes downloaded by 3 people , 5 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Author: Source: Unknown - Please cite: !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Tumor-size treated as the class attribute. As used by Kilpatrick, D. & Cameron-Jones, M. (1998). Numeric prediction using instance-based learning with encoding length selection. In Progress in Connectionist-Based Information Systems. Singapore: Springer-Verlag. !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Citation Request: This breast cancer domain was obtained from the University Medical Centre, Institute of Oncology, Ljubljana, Yugoslavia. Thanks go to M. Zwitter and M. Soklic for providing the data. Please include this citation if you plan to use this database. 1. Title: Breast cancer data (Michalski has used this) 2. Sources: -- Matjaz Zwitter & Milan Soklic (physicians) Institute of Oncology University Medical Center Ljubljana, Yugoslavia -- Donors: Ming Tan and Jeff Schlimmer (Jeffrey.Schlimmer@a.gp.cs.cmu.edu) -- Date: 11 July 1988 3. Past Usage: (Several: here are some) -- Michalski,R.S., Mozetic,I., Hong,J., & Lavrac,N. (1986). The Multi-Purpose Incremental Learning System AQ15 and its Testing Application to Three Medical Domains. In Proceedings of the Fifth National Conference on Artificial Intelligence, 1041-1045, Philadelphia, PA: Morgan Kaufmann. -- accuracy range: 66%-72% -- Clark,P. & Niblett,T. (1987). Induction in Noisy Domains. In Progress in Machine Learning (from the Proceedings of the 2nd European Working Session on Learning), 11-30, Bled, Yugoslavia: Sigma Press. -- 8 test results given: 65%-72% accuracy range -- Tan, M., & Eshelman, L. (1988). Using weighted networks to represent classification knowledge in noisy domains. Proceedings of the Fifth International Conference on Machine Learning, 121-134, Ann Arbor, MI. -- 4 systems tested: accuracy range was 68%-73.5% -- Cestnik,G., Konenenko,I, & Bratko,I. (1987). Assistant-86: A Knowledge-Elicitation Tool for Sophisticated Users. In I.Bratko & N.Lavrac (Eds.) Progress in Machine Learning, 31-45, Sigma Press. -- Assistant-86: 78% accuracy 4. Relevant Information: This is one of three domains provided by the Oncology Institute that has repeatedly appeared in the machine learning literature. (See also lymphography and primary-tumor.) This data set includes 201 instances of one class and 85 instances of another class. The instances are described by 9 attributes, some of which are linear and some are nominal. 5. Number of Instances: 286 6. Number of Attributes: 9 + the class attribute 7. Attribute Information: 1. Class: no-recurrence-events, recurrence-events 2. age: 10-19, 20-29, 30-39, 40-49, 50-59, 60-69, 70-79, 80-89, 90-99. 3. menopause: lt40, ge40, premeno. 4. tumor-size: 0-4, 5-9, 10-14, 15-19, 20-24, 25-29, 30-34, 35-39, 40-44, 45-49, 50-54, 55-59. 5. inv-nodes: 0-2, 3-5, 6-8, 9-11, 12-14, 15-17, 18-20, 21-23, 24-26, 27-29, 30-32, 33-35, 36-39. 6. node-caps: yes, no. 7. deg-malig: 1, 2, 3. 8. breast: left, right. 9. breast-quad: left-up, left-low, right-up, right-low, central. 10. irradiat: yes, no. 8. Missing Attribute Values: (denoted by "?") Attribute #: Number of instances with missing values: 6. 8 9. 1. 9. Class Distribution: 1. no-recurrence-events: 201 instances 2. recurrence-events: 85 instances

10 features

class (target)numeric23 unique values
0 missing
agenumeric44 unique values
0 missing
menopausenominal3 unique values
0 missing
inv-nodesnominal18 unique values
0 missing
node-capsnominal2 unique values
8 missing
deg-malignominal3 unique values
0 missing
breastnominal2 unique values
0 missing
breast-quadnominal5 unique values
1 missing
irradiationnominal2 unique values
0 missing
recurrencenominal2 unique values
0 missing

19 properties

286
Number of instances (rows) of the dataset.
10
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
9
Number of missing values in the dataset.
9
Number of instances with at least one value missing.
2
Number of numeric attributes.
8
Number of nominal attributes.
40
Percentage of binary attributes.
3.15
Percentage of instances having missing values.
-10.63
Average class difference between consecutive instances.
0.31
Percentage of missing values.
0.03
Number of attributes divided by the number of instances.
20
Percentage of numeric attributes.
Percentage of instances belonging to the most frequent class.
80
Percentage of nominal attributes.
Number of instances belonging to the most frequent class.
Percentage of instances belonging to the least frequent class.
Number of instances belonging to the least frequent class.
4
Number of binary attributes.

18 tasks

0 runs - estimation_procedure: 10 times 10-fold Crossvalidation - evaluation_measure: mean_absolute_error - target_feature: class
0 runs - estimation_procedure: 10-fold Crossvalidation - evaluation_measure: predictive_accuracy - target_feature: class
0 runs - estimation_procedure: 10-fold Crossvalidation - evaluation_measure: mean_absolute_error - target_feature: class
0 runs - estimation_procedure: Custom 10-fold Crossvalidation - evaluation_measure: predictive_accuracy - target_feature: class
0 runs - estimation_procedure: Test on Training Data - evaluation_measure: predictive_accuracy - target_feature: class
0 runs - estimation_procedure: 5 times 2-fold Crossvalidation - evaluation_measure: predictive_accuracy - target_feature: class
0 runs - estimation_procedure: 10 times 10-fold Crossvalidation - evaluation_measure: predictive_accuracy - target_feature: class
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task