Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL2123

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL2123

deactivated ARFF Publicly available Visibility: public Uploaded 14-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL2123 (TID: 10541), and it has 151 rows and 43 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Basic Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median).

45 features

pXC50 (target)numeric96 unique values
0 missing
molecule_id (row identifier)nominal151 unique values
0 missing
AMWnumeric123 unique values
0 missing
C.numeric70 unique values
0 missing
H.numeric69 unique values
0 missing
Menumeric62 unique values
0 missing
Minumeric43 unique values
0 missing
Mpnumeric75 unique values
0 missing
Mvnumeric71 unique values
0 missing
MWnumeric124 unique values
0 missing
N.numeric52 unique values
0 missing
nABnumeric10 unique values
0 missing
nATnumeric43 unique values
0 missing
nBnumeric2 unique values
0 missing
nBMnumeric24 unique values
0 missing
nBOnumeric36 unique values
0 missing
nBRnumeric2 unique values
0 missing
nBTnumeric44 unique values
0 missing
nCnumeric20 unique values
0 missing
nCLnumeric3 unique values
0 missing
nCspnumeric2 unique values
0 missing
nCsp2numeric17 unique values
0 missing
nCsp3numeric11 unique values
0 missing
nDBnumeric13 unique values
0 missing
nFnumeric4 unique values
0 missing
nHnumeric21 unique values
0 missing
nHetnumeric27 unique values
0 missing
nHMnumeric7 unique values
0 missing
nInumeric1 unique values
0 missing
nNnumeric7 unique values
0 missing
nOnumeric23 unique values
0 missing
nPnumeric8 unique values
0 missing
nSnumeric5 unique values
0 missing
nSKnumeric35 unique values
0 missing
nTBnumeric2 unique values
0 missing
nXnumeric4 unique values
0 missing
O.numeric78 unique values
0 missing
RBFnumeric65 unique values
0 missing
RBNnumeric15 unique values
0 missing
SCBOnumeric42 unique values
0 missing
Senumeric124 unique values
0 missing
Sinumeric124 unique values
0 missing
Spnumeric122 unique values
0 missing
Svnumeric124 unique values
0 missing
X.numeric21 unique values
0 missing

62 properties

151
Number of instances (rows) of the dataset.
45
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
44
Number of numeric attributes.
1
Number of nominal attributes.
7.95
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Percentage of instances belonging to the most frequent class.
Minimal entropy among attributes.
1.45
Second quartile (Median) of skewness among attributes of the numeric type.
Number of instances belonging to the most frequent class.
-0.53
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
2.6
Second quartile (Median) of standard deviation of attributes of the numeric type.
Maximum entropy among attributes.
0
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
151
Maximum kurtosis among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
8.34
Third quartile of kurtosis among attributes of the numeric type.
564.24
Maximum of means among attributes of the numeric type.
The minimal number of distinct values among attributes of the nominal type.
97.78
Percentage of numeric attributes.
32.72
Third quartile of means among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
-1.6
Minimum skewness among attributes of the numeric type.
2.22
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
The maximum number of distinct values among attributes of the nominal type.
0
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
2.32
Third quartile of skewness among attributes of the numeric type.
12.29
Maximum skewness among attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
0.4
First quartile of kurtosis among attributes of the numeric type.
8.01
Third quartile of standard deviation of attributes of the numeric type.
153.01
Maximum standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
0.66
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
14.63
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
27.68
Mean of means among attributes of the numeric type.
0.4
First quartile of skewness among attributes of the numeric type.
Average mutual information between the nominal attributes and the target attribute.
0.51
First quartile of standard deviation of attributes of the numeric type.
0.17
Average class difference between consecutive instances.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
Entropy of the target attribute values.
Average number of distinct values among the attributes of the nominal type.
2.84
Second quartile (Median) of kurtosis among attributes of the numeric type.
0.3
Number of attributes divided by the number of instances.
2.03
Mean skewness among attributes of the numeric type.
6.24
Second quartile (Median) of means among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.

12 tasks

1 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task