Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL5406

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL5406

deactivated ARFF Publicly available Visibility: public Uploaded 14-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL5406 (TID: 101181), and it has 71 rows and 62 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

64 features

pXC50 (target)numeric54 unique values
0 missing
molecule_id (row identifier)nominal71 unique values
0 missing
C.003numeric2 unique values
0 missing
Eig01_EA.dm.numeric12 unique values
0 missing
Eig04_AEA.bo.numeric51 unique values
0 missing
GMTIVnumeric67 unique values
0 missing
MATS1snumeric42 unique values
0 missing
MATS4snumeric57 unique values
0 missing
nCrtnumeric2 unique values
0 missing
SM05_EA.dm.numeric17 unique values
0 missing
SM07_EA.dm.numeric16 unique values
0 missing
SM09_EA.dm.numeric15 unique values
0 missing
SM10_EA.dm.numeric18 unique values
0 missing
SM11_EA.dm.numeric14 unique values
0 missing
SM12_EA.dm.numeric17 unique values
0 missing
SM13_EA.dm.numeric13 unique values
0 missing
SM14_EA.dm.numeric16 unique values
0 missing
SM15_EA.dm.numeric13 unique values
0 missing
SpDiam_EA.dm.numeric14 unique values
0 missing
SpMax_EA.dm.numeric12 unique values
0 missing
SsssCHnumeric45 unique values
0 missing
ZM2Kupnumeric62 unique values
0 missing
ZM2MulPernumeric68 unique values
0 missing
ZM2Pernumeric67 unique values
0 missing
ZM2Vnumeric56 unique values
0 missing
AACnumeric49 unique values
0 missing
ATSC3snumeric68 unique values
0 missing
IC0numeric49 unique values
0 missing
nCtnumeric2 unique values
0 missing
nDBnumeric5 unique values
0 missing
NdssCnumeric6 unique values
0 missing
Psi_e_Anumeric52 unique values
0 missing
Psi_i_Anumeric52 unique values
0 missing
Psi_i_snumeric54 unique values
0 missing
P_VSA_m_3numeric20 unique values
0 missing
P_VSA_s_6numeric31 unique values
0 missing
P_VSA_v_2numeric34 unique values
0 missing
PW5numeric20 unique values
0 missing
SAaccnumeric33 unique values
0 missing
SpMax2_Bh.s.numeric21 unique values
0 missing
SpMax3_Bh.s.numeric19 unique values
0 missing
SpMax4_Bh.s.numeric35 unique values
0 missing
SpMax5_Bh.s.numeric44 unique values
0 missing
SpMax6_Bh.s.numeric35 unique values
0 missing
ZM1Kupnumeric55 unique values
0 missing
ZM1MulPernumeric67 unique values
0 missing
ZM1Pernumeric67 unique values
0 missing
ZM1Vnumeric48 unique values
0 missing
SssCH2numeric66 unique values
0 missing
MATS4enumeric54 unique values
0 missing
NaaNHnumeric2 unique values
0 missing
SaaNHnumeric11 unique values
0 missing
SM06_EA.dm.numeric22 unique values
0 missing
SpMAD_AEA.bo.numeric45 unique values
0 missing
SpMax1_Bh.i.numeric43 unique values
0 missing
ATSC1snumeric63 unique values
0 missing
ATSC8enumeric67 unique values
0 missing
Menumeric38 unique values
0 missing
nArORnumeric3 unique values
0 missing
SM08_EA.dm.numeric21 unique values
0 missing
nCIRnumeric6 unique values
0 missing
N.067numeric2 unique values
0 missing
NdOnumeric4 unique values
0 missing
nRNHRnumeric2 unique values
0 missing

62 properties

71
Number of instances (rows) of the dataset.
64
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
63
Number of numeric attributes.
1
Number of nominal attributes.
454.25
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Percentage of instances belonging to the most frequent class.
Minimal entropy among attributes.
0.4
Second quartile (Median) of skewness among attributes of the numeric type.
Number of instances belonging to the most frequent class.
-1.84
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
1.41
Second quartile (Median) of standard deviation of attributes of the numeric type.
Maximum entropy among attributes.
-0.66
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
30.2
Maximum kurtosis among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
0.83
Third quartile of kurtosis among attributes of the numeric type.
50799.06
Maximum of means among attributes of the numeric type.
The minimal number of distinct values among attributes of the nominal type.
98.44
Percentage of numeric attributes.
27.84
Third quartile of means among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
-1.77
Minimum skewness among attributes of the numeric type.
1.56
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
The maximum number of distinct values among attributes of the nominal type.
0.01
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
1.41
Third quartile of skewness among attributes of the numeric type.
4.49
Maximum skewness among attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
-1.42
First quartile of kurtosis among attributes of the numeric type.
18.21
Third quartile of standard deviation of attributes of the numeric type.
27039.22
Maximum standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
1.38
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
0.6
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
897.56
Mean of means among attributes of the numeric type.
-0.26
First quartile of skewness among attributes of the numeric type.
Average mutual information between the nominal attributes and the target attribute.
0.39
First quartile of standard deviation of attributes of the numeric type.
0.19
Average class difference between consecutive instances.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
Entropy of the target attribute values.
Average number of distinct values among the attributes of the nominal type.
-0.1
Second quartile (Median) of kurtosis among attributes of the numeric type.
0.9
Number of attributes divided by the number of instances.
0.53
Mean skewness among attributes of the numeric type.
5.08
Second quartile (Median) of means among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task