Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL3332

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL3332

deactivated ARFF Publicly available Visibility: public Uploaded 14-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL3332 (TID: 17024), and it has 373 rows and 64 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

66 features

pXC50 (target)numeric149 unique values
0 missing
molecule_id (row identifier)nominal373 unique values
0 missing
P_VSA_LogP_3numeric30 unique values
0 missing
SsOHnumeric207 unique values
0 missing
nROHnumeric3 unique values
0 missing
NsOHnumeric3 unique values
0 missing
O.056numeric3 unique values
0 missing
P_VSA_MR_3numeric8 unique values
0 missing
CATS2D_01_DDnumeric2 unique values
0 missing
nRNHOnumeric2 unique values
0 missing
SAdonnumeric20 unique values
0 missing
ATSC1snumeric327 unique values
0 missing
LOCnumeric169 unique values
0 missing
nN.CO.2numeric3 unique values
0 missing
GATS1snumeric130 unique values
0 missing
CATS2D_02_DDnumeric2 unique values
0 missing
ATSC7mnumeric346 unique values
0 missing
nCONNnumeric2 unique values
0 missing
ATS6snumeric291 unique values
0 missing
GGI5numeric179 unique values
0 missing
SpDiam_AEA.ed.numeric179 unique values
0 missing
Eig03_AEA.ed.numeric141 unique values
0 missing
ATS7enumeric286 unique values
0 missing
ATS7snumeric298 unique values
0 missing
ATS6mnumeric292 unique values
0 missing
SpDiam_EA.ed.numeric180 unique values
0 missing
MATS3snumeric178 unique values
0 missing
MATS1enumeric124 unique values
0 missing
ATS7inumeric292 unique values
0 missing
ATSC6pnumeric343 unique values
0 missing
ATSC8mnumeric345 unique values
0 missing
X3vnumeric332 unique values
0 missing
ATS6pnumeric280 unique values
0 missing
Eig01_AEA.ri.numeric177 unique values
0 missing
SpMax_AEA.ri.numeric177 unique values
0 missing
Eig14_AEA.dm.numeric131 unique values
0 missing
P_VSA_s_5numeric25 unique values
0 missing
ATS5vnumeric269 unique values
0 missing
ATSC6inumeric307 unique values
0 missing
ATSC7pnumeric344 unique values
0 missing
ATS6vnumeric283 unique values
0 missing
P_VSA_e_5numeric35 unique values
0 missing
P_VSA_m_3numeric43 unique values
0 missing
CATS2D_02_DAnumeric8 unique values
0 missing
Eig03_EAnumeric144 unique values
0 missing
SM11_AEA.bo.numeric144 unique values
0 missing
GATS3snumeric222 unique values
0 missing
C.006numeric8 unique values
0 missing
Eig13_AEA.dm.numeric152 unique values
0 missing
ATSC1enumeric119 unique values
0 missing
ATS5pnumeric275 unique values
0 missing
ATS6enumeric273 unique values
0 missing
Eig15_AEA.ri.numeric208 unique values
0 missing
SpDiam_AEA.ri.numeric223 unique values
0 missing
IC2numeric232 unique values
0 missing
ATSC3inumeric294 unique values
0 missing
DBInumeric34 unique values
0 missing
GATS2mnumeric199 unique values
0 missing
X4vnumeric328 unique values
0 missing
TIC1numeric300 unique values
0 missing
ATSC8snumeric347 unique values
0 missing
Eig03_EA.ed.numeric166 unique values
0 missing
SM12_AEA.dm.numeric166 unique values
0 missing
ATS1inumeric204 unique values
0 missing
P_VSA_s_6numeric71 unique values
0 missing
ATS4vnumeric254 unique values
0 missing

62 properties

373
Number of instances (rows) of the dataset.
66
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
65
Number of numeric attributes.
1
Number of nominal attributes.
4.95
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Percentage of instances belonging to the most frequent class.
Minimal entropy among attributes.
0.36
Second quartile (Median) of skewness among attributes of the numeric type.
Number of instances belonging to the most frequent class.
-1.33
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.43
Second quartile (Median) of standard deviation of attributes of the numeric type.
Maximum entropy among attributes.
-0.01
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
18.29
Maximum kurtosis among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
1.69
Third quartile of kurtosis among attributes of the numeric type.
237.43
Maximum of means among attributes of the numeric type.
The minimal number of distinct values among attributes of the nominal type.
98.48
Percentage of numeric attributes.
8.92
Third quartile of means among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
-1.75
Minimum skewness among attributes of the numeric type.
1.52
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
The maximum number of distinct values among attributes of the nominal type.
0.04
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
0.66
Third quartile of skewness among attributes of the numeric type.
3.51
Maximum skewness among attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
-0.26
First quartile of kurtosis among attributes of the numeric type.
1.84
Third quartile of standard deviation of attributes of the numeric type.
61.31
Maximum standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
1.19
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
1.67
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
19.09
Mean of means among attributes of the numeric type.
-0.19
First quartile of skewness among attributes of the numeric type.
Average mutual information between the nominal attributes and the target attribute.
0.22
First quartile of standard deviation of attributes of the numeric type.
0.16
Average class difference between consecutive instances.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
Entropy of the target attribute values.
Average number of distinct values among the attributes of the nominal type.
0.65
Second quartile (Median) of kurtosis among attributes of the numeric type.
0.18
Number of attributes divided by the number of instances.
0.31
Mean skewness among attributes of the numeric type.
4.32
Second quartile (Median) of means among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task