Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL4653

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL4653

deactivated ARFF Publicly available Visibility: public Uploaded 14-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL4653 (TID: 11119), and it has 192 rows and 102 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent FCFP 1024-bit Molecular Fingerprints which were generated from SMILES strings. Feature selection was applied to this dataset. The fingerprints were obtained using the Pipeline Pilot program, Dassault Systèmes BIOVIA. Generating Fingerprints do not usually require missing value imputation as all bits are generated.

104 features

pXC50 (target)numeric160 unique values
0 missing
molecule_id (row identifier)nominal192 unique values
0 missing
FCFP4_1024b780numeric2 unique values
0 missing
FCFP4_1024b908numeric2 unique values
0 missing
FCFP4_1024b1003numeric2 unique values
0 missing
FCFP4_1024b531numeric2 unique values
0 missing
FCFP4_1024b589numeric2 unique values
0 missing
FCFP4_1024b676numeric2 unique values
0 missing
FCFP4_1024b913numeric2 unique values
0 missing
FCFP4_1024b460numeric2 unique values
0 missing
FCFP4_1024b163numeric2 unique values
0 missing
FCFP4_1024b603numeric2 unique values
0 missing
FCFP4_1024b20numeric2 unique values
0 missing
FCFP4_1024b489numeric2 unique values
0 missing
FCFP4_1024b519numeric2 unique values
0 missing
FCFP4_1024b644numeric2 unique values
0 missing
FCFP4_1024b429numeric2 unique values
0 missing
FCFP4_1024b525numeric2 unique values
0 missing
FCFP4_1024b622numeric2 unique values
0 missing
FCFP4_1024b10numeric2 unique values
0 missing
FCFP4_1024b847numeric2 unique values
0 missing
FCFP4_1024b375numeric2 unique values
0 missing
FCFP4_1024b446numeric2 unique values
0 missing
FCFP4_1024b937numeric2 unique values
0 missing
FCFP4_1024b380numeric2 unique values
0 missing
FCFP4_1024b492numeric2 unique values
0 missing
FCFP4_1024b859numeric2 unique values
0 missing
FCFP4_1024b37numeric2 unique values
0 missing
FCFP4_1024b593numeric2 unique values
0 missing
FCFP4_1024b123numeric2 unique values
0 missing
FCFP4_1024b684numeric2 unique values
0 missing
FCFP4_1024b811numeric2 unique values
0 missing
FCFP4_1024b958numeric2 unique values
0 missing
FCFP4_1024b892numeric2 unique values
0 missing
FCFP4_1024b32numeric2 unique values
0 missing
FCFP4_1024b754numeric2 unique values
0 missing
FCFP4_1024b615numeric2 unique values
0 missing
FCFP4_1024b414numeric2 unique values
0 missing
FCFP4_1024b269numeric2 unique values
0 missing
FCFP4_1024b184numeric2 unique values
0 missing
FCFP4_1024b497numeric2 unique values
0 missing
FCFP4_1024b642numeric2 unique values
0 missing
FCFP4_1024b669numeric2 unique values
0 missing
FCFP4_1024b875numeric2 unique values
0 missing
FCFP4_1024b820numeric2 unique values
0 missing
FCFP4_1024b634numeric2 unique values
0 missing
FCFP4_1024b131numeric2 unique values
0 missing
FCFP4_1024b862numeric2 unique values
0 missing
FCFP4_1024b693numeric2 unique values
0 missing
FCFP4_1024b640numeric2 unique values
0 missing
FCFP4_1024b412numeric2 unique values
0 missing
FCFP4_1024b69numeric2 unique values
0 missing
FCFP4_1024b632numeric2 unique values
0 missing
FCFP4_1024b437numeric2 unique values
0 missing
FCFP4_1024b170numeric2 unique values
0 missing
FCFP4_1024b36numeric2 unique values
0 missing
FCFP4_1024b653numeric2 unique values
0 missing
FCFP4_1024b433numeric2 unique values
0 missing
FCFP4_1024b54numeric2 unique values
0 missing
FCFP4_1024b87numeric2 unique values
0 missing
FCFP4_1024b482numeric2 unique values
0 missing
FCFP4_1024b983numeric2 unique values
0 missing
FCFP4_1024b374numeric2 unique values
0 missing
FCFP4_1024b599numeric2 unique values
0 missing
FCFP4_1024b1numeric1 unique values
0 missing
FCFP4_1024b100numeric1 unique values
0 missing
FCFP4_1024b1000numeric1 unique values
0 missing
FCFP4_1024b1001numeric1 unique values
0 missing
FCFP4_1024b1002numeric1 unique values
0 missing
FCFP4_1024b1004numeric2 unique values
0 missing
FCFP4_1024b1005numeric1 unique values
0 missing
FCFP4_1024b1006numeric1 unique values
0 missing
FCFP4_1024b1007numeric2 unique values
0 missing
FCFP4_1024b1008numeric1 unique values
0 missing
FCFP4_1024b1009numeric2 unique values
0 missing
FCFP4_1024b101numeric1 unique values
0 missing
FCFP4_1024b1010numeric2 unique values
0 missing
FCFP4_1024b1011numeric1 unique values
0 missing
FCFP4_1024b1012numeric1 unique values
0 missing
FCFP4_1024b1013numeric1 unique values
0 missing
FCFP4_1024b1014numeric2 unique values
0 missing
FCFP4_1024b1015numeric1 unique values
0 missing
FCFP4_1024b1016numeric1 unique values
0 missing
FCFP4_1024b1017numeric1 unique values
0 missing
FCFP4_1024b1018numeric2 unique values
0 missing
FCFP4_1024b1019numeric2 unique values
0 missing
FCFP4_1024b102numeric1 unique values
0 missing
FCFP4_1024b1020numeric1 unique values
0 missing
FCFP4_1024b1021numeric1 unique values
0 missing
FCFP4_1024b1022numeric1 unique values
0 missing
FCFP4_1024b1023numeric1 unique values
0 missing
FCFP4_1024b1024numeric1 unique values
0 missing
FCFP4_1024b103numeric2 unique values
0 missing
FCFP4_1024b104numeric1 unique values
0 missing
FCFP4_1024b105numeric1 unique values
0 missing
FCFP4_1024b106numeric2 unique values
0 missing
FCFP4_1024b107numeric2 unique values
0 missing
FCFP4_1024b108numeric2 unique values
0 missing
FCFP4_1024b109numeric1 unique values
0 missing
FCFP4_1024b11numeric2 unique values
0 missing
FCFP4_1024b110numeric2 unique values
0 missing
FCFP4_1024b111numeric1 unique values
0 missing
FCFP4_1024b112numeric1 unique values
0 missing
FCFP4_1024b113numeric1 unique values
0 missing

62 properties

192
Number of instances (rows) of the dataset.
104
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
103
Number of numeric attributes.
1
Number of nominal attributes.
0.25
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Percentage of instances belonging to the most frequent class.
Minimal entropy among attributes.
2.48
Second quartile (Median) of skewness among attributes of the numeric type.
Number of instances belonging to the most frequent class.
-2.01
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.28
Second quartile (Median) of standard deviation of attributes of the numeric type.
Maximum entropy among attributes.
0
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
192
Maximum kurtosis among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
9.06
Third quartile of kurtosis among attributes of the numeric type.
7.5
Maximum of means among attributes of the numeric type.
The minimal number of distinct values among attributes of the nominal type.
99.04
Percentage of numeric attributes.
0.3
Third quartile of means among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
-2.44
Minimum skewness among attributes of the numeric type.
0.96
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
The maximum number of distinct values among attributes of the nominal type.
0
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
3.31
Third quartile of skewness among attributes of the numeric type.
13.86
Maximum skewness among attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
-0.98
First quartile of kurtosis among attributes of the numeric type.
0.39
Third quartile of standard deviation of attributes of the numeric type.
1.41
Maximum standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
0
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
22.9
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
0.26
Mean of means among attributes of the numeric type.
0.45
First quartile of skewness among attributes of the numeric type.
Average mutual information between the nominal attributes and the target attribute.
0
First quartile of standard deviation of attributes of the numeric type.
0.14
Average class difference between consecutive instances.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
Entropy of the target attribute values.
Average number of distinct values among the attributes of the nominal type.
4.2
Second quartile (Median) of kurtosis among attributes of the numeric type.
0.54
Number of attributes divided by the number of instances.
2.93
Mean skewness among attributes of the numeric type.
0.09
Second quartile (Median) of means among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.

12 tasks

1 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task