BNG(pendigits)
Issue |
#Downvotes for this reason |
By |
|
17 features
class (target) | nominal | 10 unique values 0 missing | |
input1 | numeric | 781519 unique values 0 missing | |
input2 | numeric | 711063 unique values 0 missing | |
input3 | numeric | 994142 unique values 0 missing | |
input4 | numeric | 616283 unique values 0 missing | |
input5 | numeric | 994331 unique values 0 missing | |
input6 | numeric | 993317 unique values 0 missing | |
input7 | numeric | 994926 unique values 0 missing | |
input8 | numeric | 994526 unique values 0 missing | |
input9 | numeric | 992531 unique values 0 missing | |
input10 | numeric | 790624 unique values 0 missing | |
input11 | numeric | 777454 unique values 0 missing | |
input12 | numeric | 992970 unique values 0 missing | |
input13 | numeric | 992191 unique values 0 missing | |
input14 | numeric | 985747 unique values 0 missing | |
input15 | numeric | 464349 unique values 0 missing | |
input16 | numeric | 659098 unique values 0 missing | |
19 properties
1000000
Number of instances (rows) of the dataset.
17
Number of attributes (columns) of the dataset.
10
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
16
Number of numeric attributes.
1
Number of nominal attributes.
104513
Number of instances belonging to the most frequent class.
9.56
Percentage of instances belonging to the least frequent class.
95594
Number of instances belonging to the least frequent class.
0
Number of binary attributes.
0
Percentage of binary attributes.
0
Percentage of instances having missing values.
0.1
Average class difference between consecutive instances.
0
Percentage of missing values.
0
Number of attributes divided by the number of instances.
94.12
Percentage of numeric attributes.
10.45
Percentage of instances belonging to the most frequent class.
5.88
Percentage of nominal attributes.
25 tasks
20 runs - estimation_procedure: 10-fold Crossvalidation - evaluation_measure: predictive_accuracy - target_feature: class
0 runs - estimation_procedure: 10 times 10-fold Crossvalidation - evaluation_measure: predictive_accuracy - target_feature: class
0 runs - estimation_procedure: 33% Holdout set - evaluation_measure: predictive_accuracy - target_feature: class
0 runs - estimation_procedure: 10-fold Crossvalidation - evaluation_measure: precision - target_feature: class
0 runs - estimation_procedure: 10-fold Learning Curve - evaluation_measure: predictive_accuracy - target_feature: class
0 runs - estimation_procedure: 10-fold Learning Curve - target_feature: class
0 runs - estimation_procedure: 10-fold Learning Curve - target_feature: class
0 runs - estimation_procedure: 10-fold Learning Curve - target_feature: class
0 runs - estimation_procedure: 10-fold Learning Curve - target_feature: class
0 runs - estimation_procedure: 10-fold Learning Curve - target_feature: class
0 runs - estimation_procedure: 10-fold Learning Curve - target_feature: class
0 runs - estimation_procedure: 10-fold Learning Curve - target_feature: class
0 runs - estimation_procedure: 10-fold Learning Curve - target_feature: class
273 runs - estimation_procedure: Interleaved Test then Train - target_feature: class
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task