Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL2623

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL2623

deactivated ARFF Publicly available Visibility: public Uploaded 14-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL2623 (TID: 17054), and it has 105 rows and 60 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

62 features

pXC50 (target)numeric72 unique values
0 missing
molecule_id (row identifier)nominal105 unique values
0 missing
P_VSA_s_3numeric74 unique values
0 missing
ALOGPnumeric98 unique values
0 missing
ALOGP2numeric99 unique values
0 missing
TIEnumeric105 unique values
0 missing
SPInumeric82 unique values
0 missing
Eta_Cnumeric103 unique values
0 missing
ATS3snumeric102 unique values
0 missing
ATSC8snumeric91 unique values
0 missing
SpDiam_AEA.bo.numeric89 unique values
0 missing
SdOnumeric102 unique values
0 missing
ATSC8mnumeric91 unique values
0 missing
ATSC8enumeric83 unique values
0 missing
GGI8numeric42 unique values
0 missing
BLTA96numeric80 unique values
0 missing
BLTD48numeric79 unique values
0 missing
BLTF96numeric78 unique values
0 missing
MLOGPnumeric89 unique values
0 missing
MLOGP2numeric89 unique values
0 missing
SpMax4_Bh.m.numeric93 unique values
0 missing
Eig01_AEA.bo.numeric71 unique values
0 missing
SpMax_AEA.bo.numeric71 unique values
0 missing
SpMax5_Bh.m.numeric75 unique values
0 missing
Eig01_AEA.ri.numeric79 unique values
0 missing
SpMax_AEA.ri.numeric79 unique values
0 missing
ON0numeric57 unique values
0 missing
Eig05_AEA.dm.numeric87 unique values
0 missing
ATS4snumeric101 unique values
0 missing
ATS8enumeric89 unique values
0 missing
ATS8inumeric86 unique values
0 missing
ATS7mnumeric89 unique values
0 missing
Eig01_EA.ri.numeric79 unique values
0 missing
SM08_EA.ri.numeric103 unique values
0 missing
SM09_EA.ri.numeric89 unique values
0 missing
SM10_EA.ri.numeric103 unique values
0 missing
SM11_EA.ri.numeric91 unique values
0 missing
SM12_EA.ri.numeric99 unique values
0 missing
SM13_EA.ri.numeric91 unique values
0 missing
SM14_EA.ri.numeric99 unique values
0 missing
SM15_EA.ri.numeric92 unique values
0 missing
SpDiam_EA.ri.numeric82 unique values
0 missing
SpMax_EA.ri.numeric79 unique values
0 missing
SpMax3_Bh.v.numeric91 unique values
0 missing
S1Knumeric86 unique values
0 missing
SpMax4_Bh.s.numeric86 unique values
0 missing
SpMax4_Bh.p.numeric85 unique values
0 missing
SpMaxA_EA.dm.numeric55 unique values
0 missing
VvdwZAZnumeric89 unique values
0 missing
Eig01_EA.bo.numeric67 unique values
0 missing
SM11_AEA.ri.numeric67 unique values
0 missing
SM15_EA.bo.numeric80 unique values
0 missing
SpMax_EA.bo.numeric67 unique values
0 missing
Eig06_AEA.dm.numeric79 unique values
0 missing
ATSC7enumeric83 unique values
0 missing
ATS7vnumeric90 unique values
0 missing
Eig03_AEA.dm.numeric91 unique values
0 missing
DELSnumeric104 unique values
0 missing
CATS2D_04_LLnumeric21 unique values
0 missing
SpDiam_AEA.ri.numeric87 unique values
0 missing
SpMax5_Bh.s.numeric73 unique values
0 missing
Uindexnumeric83 unique values
0 missing

62 properties

105
Number of instances (rows) of the dataset.
62
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
61
Number of numeric attributes.
1
Number of nominal attributes.
Maximum entropy among attributes.
-1.54
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.95
Second quartile (Median) of standard deviation of attributes of the numeric type.
7.81
Maximum kurtosis among attributes of the numeric type.
-4.34
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
269.45
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
1.31
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.39
Percentage of numeric attributes.
14.12
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-1.7
Minimum skewness among attributes of the numeric type.
1.61
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
2.43
Maximum skewness among attributes of the numeric type.
0.07
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
0.96
Third quartile of skewness among attributes of the numeric type.
116.64
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
-0.12
First quartile of kurtosis among attributes of the numeric type.
3.29
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
3.06
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
0.86
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
13.53
Mean of means among attributes of the numeric type.
-0.51
First quartile of skewness among attributes of the numeric type.
Average mutual information between the nominal attributes and the target attribute.
0.34
First quartile of standard deviation of attributes of the numeric type.
-0.39
Average class difference between consecutive instances.
Entropy of the target attribute values.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
0.59
Number of attributes divided by the number of instances.
Average number of distinct values among the attributes of the nominal type.
0.29
Second quartile (Median) of kurtosis among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
0.12
Mean skewness among attributes of the numeric type.
4.8
Second quartile (Median) of means among attributes of the numeric type.
Percentage of instances belonging to the most frequent class.
6.29
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
-0.11
Second quartile (Median) of skewness among attributes of the numeric type.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task