Data

wine_quality

active
ARFF
Publicly available Visibility: public Uploaded 14-08-2014 by Tobias Kuehn

1 likes downloaded by 13 people , 19 total downloads 0 issues 0 downvotes

1 likes downloaded by 13 people , 19 total downloads 0 issues 0 downvotes

Issue | #Downvotes for this reason | By |
---|

Loading wiki

Help us complete this description
Edit

Author: Tobias Kuehn
Source: Unknown - 2009
Please cite:
1. Title: Wine Quality
2. Sources
Created by: Paulo Cortez (Univ. Minho), Antonio Cerdeira, Fernando Almeida, Telmo Matos and Jose Reis (CVRVV) @ 2009
3. Past Usage:
P. Cortez, A. Cerdeira, F. Almeida, T. Matos and J. Reis.
Modeling wine preferences by data mining from physicochemical properties.
In Decision Support Systems, Elsevier, 47(4):547-553. ISSN: 0167-9236.
In the above reference, two datasets were created, using red and white wine samples.
The inputs include objective tests (e.g. PH values) and the output is based on sensory data (median of at least 3 evaluations made by wine experts). Each expert graded the wine quality between 0 (very bad) and 10 (very excellent). Several data mining methods were applied to model these datasets under a regression approach. The support vector machine model achieved the best results. Several metrics were computed: MAD, confusion matrix for a fixed error tolerance (T), etc. Also, we plot the relative importances of the input variables (as measured by a sensitivity analysis procedure).
4. Relevant Information:
The two datasets are related to red and white variants of the Portuguese "Vinho Verde" wine. For more details, consult: http://www.vinhoverde.pt/en/ or the reference [Cortez et al., 2009]. Due to privacy and logistic issues, only physicochemical (inputs) and sensory (the output) variables are available (e.g. there is no data about grape types, wine brand, wine selling price, etc.).
These datasets can be viewed as classification or regression tasks.
The classes are ordered and not balanced (e.g. there are munch more normal wines than excellent or poor ones). Outlier detection algorithms could be used to detect the few excellent or poor wines. Also, we are not sure if all input variables are relevant. So it could be interesting to test feature selection methods.
5. Number of Instances: red wine - first 1599 instances; white wine - instances 1600 to 6497.
6. Number of Attributes: 11 + output attribute
Note: several of the attributes may be correlated, thus it makes sense to apply some sort of feature selection.
7. Attribute information:
For more information, read [Cortez et al., 2009].
Input variables (based on physicochemical tests):
1 - fixed acidity
2 - volatile acidity
3 - citric acid
4 - residual sugar
5 - chlorides
6 - free sulfur dioxide
7 - total sulfur dioxide
8 - density
9 - pH
10 - sulphates
11 - alcohol
Output variable (based on sensory data):
12 - quality (score between 0 and 10)
8. Missing Attribute Values: None

quality (target) | numeric | 7 unique values 0 missing | |

fixed.acidity | numeric | 106 unique values 0 missing | |

volatile.acidity | numeric | 187 unique values 0 missing | |

citric.acid | numeric | 89 unique values 0 missing | |

residual.sugar | numeric | 316 unique values 0 missing | |

chlorides | numeric | 214 unique values 0 missing | |

free.sulfur.dioxide | numeric | 135 unique values 0 missing | |

total.sulfur.dioxide | numeric | 276 unique values 0 missing | |

density | numeric | 998 unique values 0 missing | |

pH | numeric | 108 unique values 0 missing | |

sulphates | numeric | 111 unique values 0 missing | |

alcohol | numeric | 111 unique values 0 missing |

3.59

Second quartile (Median) of kurtosis among attributes of the numeric type.

4.33

Second quartile (Median) of means among attributes of the numeric type.

Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 3

Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump

Second quartile (Median) of mutual information between the nominal attributes and the target attribute.

Minimal mutual information between the nominal attributes and the target attribute.

0.89

Second quartile (Median) of skewness among attributes of the numeric type.

Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump

Maximum mutual information between the nominal attributes and the target attribute.

The minimal number of distinct values among attributes of the nominal type.

0.52

Second quartile (Median) of standard deviation of attributes of the numeric type.

Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1

The maximum number of distinct values among attributes of the nominal type.

Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1

Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.

7.58

Third quartile of kurtosis among attributes of the numeric type.

Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1

Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .00001

Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W

Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2

Third quartile of mutual information between the nominal attributes and the target attribute.

Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W

Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2

1.67

Third quartile of skewness among attributes of the numeric type.

Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W

Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2

Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .0001

0.27

First quartile of kurtosis among attributes of the numeric type.

3.89

Third quartile of standard deviation of attributes of the numeric type.

Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W

Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3

Average mutual information between the nominal attributes and the target attribute.

Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 1

Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W

Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3

An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.

First quartile of mutual information between the nominal attributes and the target attribute.

Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W

Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3

Average number of distinct values among the attributes of the nominal type.

0.41

First quartile of skewness among attributes of the numeric type.

Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W

Standard deviation of the number of distinct values among attributes of the nominal type.

0.15

First quartile of standard deviation of attributes of the numeric type.

Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 2

Error rate achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W

Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W