Data
XYZ

XYZ

in_preparation ARFF Publicly available Visibility: public Uploaded 17-02-2017 by Elvis Koci
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Hello Hello

77 features

corpus_namestring3 unique values
0 missing
file_namestring215 unique values
0 missing
sheet_namestring347 unique values
0 missing
addressstring25391 unique values
0 missing
labelnominal5 unique values
0 missing
count_cellsnumeric564 unique values
0 missing
is_transposednominal2 unique values
0 missing
is_horizontalnominal2 unique values
0 missing
is_verticalnominal2 unique values
0 missing
is_squarenominal2 unique values
0 missing
widthnumeric58 unique values
0 missing
heightnumeric263 unique values
0 missing
perimeternumeric308 unique values
0 missing
count_its_kindnumeric136 unique values
0 missing
dist_its_kindnumeric143 unique values
0 missing
dist_any_kindnumeric23 unique values
0 missing
typenominal2 unique values
0 missing
similarity_leftnumeric386 unique values
0 missing
influence_leftnumeric393 unique values
0 missing
dissimilarity_leftnumeric109 unique values
0 missing
emptiness_leftnumeric298 unique values
0 missing
similarity_rightnumeric429 unique values
0 missing
influence_rightnumeric430 unique values
0 missing
dissimilarity_rightnumeric116 unique values
0 missing
emptiness_rightnumeric367 unique values
0 missing
similarity_topnumeric297 unique values
0 missing
influence_topnumeric392 unique values
0 missing
dissimilarity_topnumeric164 unique values
0 missing
emptiness_topnumeric192 unique values
0 missing
similarity_bottomnumeric294 unique values
0 missing
influence_bottomnumeric490 unique values
0 missing
dissimilarity_bottomnumeric188 unique values
0 missing
emptiness_bottomnumeric206 unique values
0 missing
similarity_rownumeric884 unique values
0 missing
influence_rownumeric901 unique values
0 missing
dissimilarity_rownumeric193 unique values
0 missing
emptiness_rownumeric572 unique values
0 missing
similarity_columnnumeric777 unique values
0 missing
influence_columnnumeric1538 unique values
0 missing
dissimilarity_columnnumeric381 unique values
0 missing
emptiness_columnnumeric374 unique values
0 missing
similarity_ltnumeric2087 unique values
0 missing
influence_ltnumeric2695 unique values
0 missing
dissimilarity_ltnumeric728 unique values
0 missing
emptiness_ltnumeric1068 unique values
0 missing
similarity_lbnumeric2119 unique values
0 missing
influence_lbnumeric2912 unique values
0 missing
dissimilarity_lbnumeric845 unique values
0 missing
emptiness_lbnumeric1236 unique values
0 missing
similarity_rtnumeric1992 unique values
0 missing
influence_rtnumeric2730 unique values
0 missing
dissimilarity_rtnumeric806 unique values
0 missing
emptiness_rtnumeric1207 unique values
0 missing
similarity_rbnumeric1652 unique values
0 missing
influence_rbnumeric2351 unique values
0 missing
dissimilarity_rbnumeric612 unique values
0 missing
emptiness_rbnumeric1147 unique values
0 missing
similarity_lrtnumeric3612 unique values
0 missing
influence_lrtnumeric5423 unique values
0 missing
dissimilarity_lrtnumeric1390 unique values
0 missing
emptiness_lrtnumeric1688 unique values
0 missing
similarity_lrbnumeric3378 unique values
0 missing
influence_lrbnumeric5206 unique values
0 missing
dissimilarity_lrbnumeric1356 unique values
0 missing
emptiness_lrbnumeric1706 unique values
0 missing
similarity_ltbnumeric3708 unique values
0 missing
influence_ltbnumeric5457 unique values
0 missing
dissimilarity_ltbnumeric1412 unique values
0 missing
emptiness_ltbnumeric1918 unique values
0 missing
similarity_rtbnumeric3313 unique values
0 missing
influence_rtbnumeric5005 unique values
0 missing
dissimilarity_rtbnumeric1352 unique values
0 missing
emptiness_rtbnumeric1980 unique values
0 missing
similarity_overallnumeric3794 unique values
0 missing
influence_overallnumeric5628 unique values
0 missing
dissimilarity_overallnumeric1280 unique values
0 missing
emptiness_overallnumeric1614 unique values
0 missing

19 properties

44690
Number of instances (rows) of the dataset.
77
Number of attributes (columns) of the dataset.
-1
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
67
Number of numeric attributes.
10
Number of nominal attributes.
6.49
Percentage of binary attributes.
0
Percentage of instances having missing values.
1
Average class difference between consecutive instances.
0
Percentage of missing values.
-1
The predictive accuracy obtained by always predicting the majority class.
87.01
Percentage of numeric attributes.
0
Number of attributes divided by the number of instances.
12.99
Percentage of nominal attributes.
-1
Percentage of instances belonging to the most frequent class.
-1
Number of instances belonging to the most frequent class.
-1
Number of instances belonging to the least frequent class.
5
Number of binary attributes.

2 tasks

Define a new task