Data
reuters

reuters

active ARFF Publicly available Visibility: public Uploaded 14-03-2019 by Quay Au
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Multi-label dataset. A subset of the reuters dataset includes 2000 observations for text classification.

250 features

label1 (target)nominal2 unique values
0 missing
label2 (target)nominal2 unique values
0 missing
label3 (target)nominal2 unique values
0 missing
label4 (target)nominal2 unique values
0 missing
label5 (target)nominal2 unique values
0 missing
label6 (target)nominal2 unique values
0 missing
label7 (target)nominal2 unique values
0 missing
feature1numeric8 unique values
0 missing
feature2numeric4 unique values
0 missing
feature3numeric4 unique values
0 missing
feature4numeric7 unique values
0 missing
feature5numeric14 unique values
0 missing
feature6numeric15 unique values
0 missing
feature7numeric23 unique values
0 missing
feature8numeric13 unique values
0 missing
feature9numeric24 unique values
0 missing
feature10numeric15 unique values
0 missing
feature11numeric19 unique values
0 missing
feature12numeric15 unique values
0 missing
feature13numeric22 unique values
0 missing
feature14numeric12 unique values
0 missing
feature15numeric22 unique values
0 missing
feature16numeric17 unique values
0 missing
feature17numeric15 unique values
0 missing
feature18numeric10 unique values
0 missing
feature19numeric23 unique values
0 missing
feature20numeric10 unique values
0 missing
feature21numeric17 unique values
0 missing
feature22numeric20 unique values
0 missing
feature23numeric15 unique values
0 missing
feature24numeric8 unique values
0 missing
feature25numeric18 unique values
0 missing
feature26numeric11 unique values
0 missing
feature27numeric12 unique values
0 missing
feature28numeric15 unique values
0 missing
feature29numeric15 unique values
0 missing
feature30numeric9 unique values
0 missing
feature31numeric22 unique values
0 missing
feature32numeric13 unique values
0 missing
feature33numeric10 unique values
0 missing
feature34numeric16 unique values
0 missing
feature35numeric8 unique values
0 missing
feature36numeric15 unique values
0 missing
feature37numeric16 unique values
0 missing
feature38numeric9 unique values
0 missing
feature39numeric11 unique values
0 missing
feature40numeric14 unique values
0 missing
feature41numeric11 unique values
0 missing
feature42numeric6 unique values
0 missing
feature43numeric16 unique values
0 missing
feature44numeric8 unique values
0 missing
feature45numeric14 unique values
0 missing
feature46numeric18 unique values
0 missing
feature47numeric11 unique values
0 missing
feature48numeric7 unique values
0 missing
feature49numeric14 unique values
0 missing
feature50numeric16 unique values
0 missing
feature51numeric12 unique values
0 missing
feature52numeric10 unique values
0 missing
feature53numeric9 unique values
0 missing
feature54numeric7 unique values
0 missing
feature55numeric10 unique values
0 missing
feature56numeric14 unique values
0 missing
feature57numeric13 unique values
0 missing
feature58numeric12 unique values
0 missing
feature59numeric10 unique values
0 missing
feature60numeric9 unique values
0 missing
feature61numeric17 unique values
0 missing
feature62numeric10 unique values
0 missing
feature63numeric7 unique values
0 missing
feature64numeric15 unique values
0 missing
feature65numeric10 unique values
0 missing
feature66numeric10 unique values
0 missing
feature67numeric16 unique values
0 missing
feature68numeric7 unique values
0 missing
feature69numeric8 unique values
0 missing
feature70numeric8 unique values
0 missing
feature71numeric15 unique values
0 missing
feature72numeric6 unique values
0 missing
feature73numeric10 unique values
0 missing
feature74numeric8 unique values
0 missing
feature75numeric5 unique values
0 missing
feature76numeric11 unique values
0 missing
feature77numeric14 unique values
0 missing
feature78numeric16 unique values
0 missing
feature79numeric10 unique values
0 missing
feature80numeric8 unique values
0 missing
feature81numeric15 unique values
0 missing
feature82numeric7 unique values
0 missing
feature83numeric7 unique values
0 missing
feature84numeric6 unique values
0 missing
feature85numeric16 unique values
0 missing
feature86numeric11 unique values
0 missing
feature87numeric6 unique values
0 missing
feature88numeric7 unique values
0 missing
feature89numeric16 unique values
0 missing
feature90numeric7 unique values
0 missing
feature91numeric12 unique values
0 missing
feature92numeric12 unique values
0 missing
feature93numeric7 unique values
0 missing
feature94numeric8 unique values
0 missing
feature95numeric6 unique values
0 missing
feature96numeric11 unique values
0 missing
feature97numeric10 unique values
0 missing
feature98numeric7 unique values
0 missing
feature99numeric12 unique values
0 missing
feature100numeric9 unique values
0 missing
feature101numeric11 unique values
0 missing
feature102numeric6 unique values
0 missing
feature103numeric9 unique values
0 missing
feature104numeric8 unique values
0 missing
feature105numeric8 unique values
0 missing
feature106numeric18 unique values
0 missing
feature107numeric8 unique values
0 missing
feature108numeric7 unique values
0 missing
feature109numeric9 unique values
0 missing
feature110numeric7 unique values
0 missing
feature111numeric11 unique values
0 missing
feature112numeric7 unique values
0 missing
feature113numeric13 unique values
0 missing
feature114numeric7 unique values
0 missing
feature115numeric14 unique values
0 missing
feature116numeric7 unique values
0 missing
feature117numeric7 unique values
0 missing
feature118numeric10 unique values
0 missing
feature119numeric9 unique values
0 missing
feature120numeric10 unique values
0 missing
feature121numeric13 unique values
0 missing
feature122numeric10 unique values
0 missing
feature123numeric6 unique values
0 missing
feature124numeric6 unique values
0 missing
feature125numeric9 unique values
0 missing
feature126numeric8 unique values
0 missing
feature127numeric14 unique values
0 missing
feature128numeric5 unique values
0 missing
feature129numeric5 unique values
0 missing
feature130numeric9 unique values
0 missing
feature131numeric9 unique values
0 missing
feature132numeric5 unique values
0 missing
feature133numeric13 unique values
0 missing
feature134numeric15 unique values
0 missing
feature135numeric6 unique values
0 missing
feature136numeric9 unique values
0 missing
feature137numeric9 unique values
0 missing
feature138numeric5 unique values
0 missing
feature139numeric8 unique values
0 missing
feature140numeric5 unique values
0 missing
feature141numeric14 unique values
0 missing
feature142numeric7 unique values
0 missing
feature143numeric6 unique values
0 missing
feature144numeric8 unique values
0 missing
feature145numeric10 unique values
0 missing
feature146numeric7 unique values
0 missing
feature147numeric6 unique values
0 missing
feature148numeric11 unique values
0 missing
feature149numeric8 unique values
0 missing
feature150numeric6 unique values
0 missing
feature151numeric9 unique values
0 missing
feature152numeric6 unique values
0 missing
feature153numeric11 unique values
0 missing
feature154numeric11 unique values
0 missing
feature155numeric10 unique values
0 missing
feature156numeric9 unique values
0 missing
feature157numeric7 unique values
0 missing
feature158numeric5 unique values
0 missing
feature159numeric7 unique values
0 missing
feature160numeric5 unique values
0 missing
feature161numeric11 unique values
0 missing
feature162numeric8 unique values
0 missing
feature163numeric10 unique values
0 missing
feature164numeric7 unique values
0 missing
feature165numeric7 unique values
0 missing
feature166numeric7 unique values
0 missing
feature167numeric6 unique values
0 missing
feature168numeric5 unique values
0 missing
feature169numeric15 unique values
0 missing
feature170numeric5 unique values
0 missing
feature171numeric12 unique values
0 missing
feature172numeric13 unique values
0 missing
feature173numeric9 unique values
0 missing
feature174numeric6 unique values
0 missing
feature175numeric7 unique values
0 missing
feature176numeric9 unique values
0 missing
feature177numeric7 unique values
0 missing
feature178numeric5 unique values
0 missing
feature179numeric6 unique values
0 missing
feature180numeric6 unique values
0 missing
feature181numeric9 unique values
0 missing
feature182numeric6 unique values
0 missing
feature183numeric6 unique values
0 missing
feature184numeric5 unique values
0 missing
feature185numeric8 unique values
0 missing
feature186numeric6 unique values
0 missing
feature187numeric9 unique values
0 missing
feature188numeric9 unique values
0 missing
feature189numeric7 unique values
0 missing
feature190numeric10 unique values
0 missing
feature191numeric13 unique values
0 missing
feature192numeric6 unique values
0 missing
feature193numeric11 unique values
0 missing
feature194numeric7 unique values
0 missing
feature195numeric7 unique values
0 missing
feature196numeric10 unique values
0 missing
feature197numeric10 unique values
0 missing
feature198numeric6 unique values
0 missing
feature199numeric8 unique values
0 missing
feature200numeric5 unique values
0 missing
feature201numeric9 unique values
0 missing
feature202numeric6 unique values
0 missing
feature203numeric5 unique values
0 missing
feature204numeric6 unique values
0 missing
feature205numeric12 unique values
0 missing
feature206numeric7 unique values
0 missing
feature207numeric7 unique values
0 missing
feature208numeric10 unique values
0 missing
feature209numeric7 unique values
0 missing
feature210numeric8 unique values
0 missing
feature211numeric14 unique values
0 missing
feature212numeric7 unique values
0 missing
feature213numeric5 unique values
0 missing
feature214numeric4 unique values
0 missing
feature215numeric5 unique values
0 missing
feature216numeric6 unique values
0 missing
feature217numeric8 unique values
0 missing
feature218numeric8 unique values
0 missing
feature219numeric4 unique values
0 missing
feature220numeric5 unique values
0 missing
feature221numeric11 unique values
0 missing
feature222numeric9 unique values
0 missing
feature223numeric8 unique values
0 missing
feature224numeric6 unique values
0 missing
feature225numeric11 unique values
0 missing
feature226numeric10 unique values
0 missing
feature227numeric5 unique values
0 missing
feature228numeric5 unique values
0 missing
feature229numeric10 unique values
0 missing
feature230numeric5 unique values
0 missing
feature231numeric6 unique values
0 missing
feature232numeric10 unique values
0 missing
feature233numeric7 unique values
0 missing
feature234numeric6 unique values
0 missing
feature235numeric9 unique values
0 missing
feature236numeric7 unique values
0 missing
feature237numeric6 unique values
0 missing
feature238numeric5 unique values
0 missing
feature239numeric9 unique values
0 missing
feature240numeric4 unique values
0 missing
feature241numeric12 unique values
0 missing
feature242numeric6 unique values
0 missing
feature243numeric7 unique values
0 missing

62 properties

2000
Number of instances (rows) of the dataset.
250
Number of attributes (columns) of the dataset.
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
243
Number of numeric attributes.
7
Number of nominal attributes.
5.58
First quartile of skewness among attributes of the numeric type.
0.22
Mean of means among attributes of the numeric type.
0.46
First quartile of standard deviation of attributes of the numeric type.
Average class difference between consecutive instances.
Average mutual information between the nominal attributes and the target attribute.
Second quartile (Median) of entropy among attributes.
Entropy of the target attribute values.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
67.43
Second quartile (Median) of kurtosis among attributes of the numeric type.
0.13
Number of attributes divided by the number of instances.
2
Average number of distinct values among the attributes of the nominal type.
0.14
Second quartile (Median) of means among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
8.2
Mean skewness among attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Percentage of instances belonging to the most frequent class.
0.8
Mean standard deviation of attributes of the numeric type.
7.14
Second quartile (Median) of skewness among attributes of the numeric type.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
2.8
Percentage of binary attributes.
0.66
Second quartile (Median) of standard deviation of attributes of the numeric type.
Maximum entropy among attributes.
-1.61
Minimum kurtosis among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
1138.79
Maximum kurtosis among attributes of the numeric type.
0.04
Minimum of means among attributes of the numeric type.
0
Percentage of missing values.
140.38
Third quartile of kurtosis among attributes of the numeric type.
1.3
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
97.2
Percentage of numeric attributes.
0.24
Third quartile of means among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
2
The minimal number of distinct values among attributes of the nominal type.
2.8
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
2
The maximum number of distinct values among attributes of the nominal type.
0.06
Minimum skewness among attributes of the numeric type.
First quartile of entropy among attributes.
9.53
Third quartile of skewness among attributes of the numeric type.
30.17
Maximum skewness among attributes of the numeric type.
0.26
Minimum standard deviation of attributes of the numeric type.
41.96
First quartile of kurtosis among attributes of the numeric type.
1.01
Third quartile of standard deviation of attributes of the numeric type.
2.78
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
Number of instances belonging to the least frequent class.
0.1
First quartile of means among attributes of the numeric type.
0
Standard deviation of the number of distinct values among attributes of the nominal type.
Average entropy of the attributes.
7
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
121.43
Mean kurtosis among attributes of the numeric type.

1 tasks

0 runs - estimation_procedure: 50 times Clustering
Define a new task