Data
Indian_pines

Indian_pines

active ARFF Public Domain (CC0) Visibility: public Uploaded 09-07-2019 by Arman Khudinyan
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Author: Manvel Khudinyan Source: [original](https://purr.purdue.edu/publications/1947/1) - The imagery was collected on 12 June 1992 and represents a 2.9 by 2.9 km area in Tippecanoe County, Indiana, USA Please cite: Data contains the information of 9144 samples form 220 spectral bands. The classes represent land-use types: alfalfa, corn, grass, hay, oats, soybeans, trees, and wheat.

221 features

Class (target)nominal8 unique values
0 missing
0numeric455 unique values
0 missing
1numeric476 unique values
0 missing
2numeric779 unique values
0 missing
3numeric692 unique values
0 missing
4numeric1041 unique values
0 missing
5numeric1333 unique values
0 missing
6numeric1495 unique values
0 missing
7numeric1630 unique values
0 missing
8numeric1724 unique values
0 missing
9numeric1755 unique values
0 missing
10numeric1513 unique values
0 missing
11numeric1902 unique values
0 missing
12numeric1716 unique values
0 missing
13numeric2094 unique values
0 missing
14numeric2192 unique values
0 missing
15numeric2119 unique values
0 missing
16numeric2160 unique values
0 missing
17numeric2391 unique values
0 missing
18numeric2467 unique values
0 missing
19numeric2511 unique values
0 missing
20numeric2540 unique values
0 missing
21numeric2120 unique values
0 missing
22numeric2627 unique values
0 missing
23numeric2654 unique values
0 missing
24numeric2726 unique values
0 missing
25numeric2689 unique values
0 missing
26numeric2708 unique values
0 missing
27numeric2845 unique values
0 missing
28numeric2857 unique values
0 missing
29numeric2635 unique values
0 missing
30numeric2672 unique values
0 missing
31numeric1875 unique values
0 missing
32numeric2453 unique values
0 missing
33numeric2643 unique values
0 missing
34numeric2251 unique values
0 missing
35numeric1911 unique values
0 missing
36numeric2364 unique values
0 missing
37numeric2951 unique values
0 missing
38numeric3047 unique values
0 missing
39numeric2333 unique values
0 missing
40numeric3221 unique values
0 missing
41numeric2966 unique values
0 missing
42numeric3070 unique values
0 missing
43numeric3003 unique values
0 missing
44numeric2894 unique values
0 missing
45numeric2673 unique values
0 missing
46numeric2761 unique values
0 missing
47numeric2973 unique values
0 missing
48numeric2900 unique values
0 missing
49numeric2907 unique values
0 missing
50numeric2919 unique values
0 missing
51numeric2872 unique values
0 missing
52numeric2350 unique values
0 missing
53numeric2399 unique values
0 missing
54numeric2274 unique values
0 missing
55numeric2213 unique values
0 missing
56numeric1959 unique values
0 missing
57numeric976 unique values
0 missing
58numeric1064 unique values
0 missing
59numeric1147 unique values
0 missing
60numeric1554 unique values
0 missing
61numeric1830 unique values
0 missing
62numeric2020 unique values
0 missing
63numeric1805 unique values
0 missing
64numeric2142 unique values
0 missing
65numeric2202 unique values
0 missing
66numeric2201 unique values
0 missing
67numeric2216 unique values
0 missing
68numeric2196 unique values
0 missing
69numeric2208 unique values
0 missing
70numeric2120 unique values
0 missing
71numeric2081 unique values
0 missing
72numeric2058 unique values
0 missing
73numeric1911 unique values
0 missing
74numeric1521 unique values
0 missing
75numeric1282 unique values
0 missing
76numeric541 unique values
0 missing
77numeric395 unique values
0 missing
78numeric537 unique values
0 missing
79numeric438 unique values
0 missing
80numeric688 unique values
0 missing
81numeric992 unique values
0 missing
82numeric1044 unique values
0 missing
83numeric1023 unique values
0 missing
84numeric1072 unique values
0 missing
85numeric1046 unique values
0 missing
86numeric1090 unique values
0 missing
87numeric1128 unique values
0 missing
88numeric1159 unique values
0 missing
89numeric1140 unique values
0 missing
90numeric1086 unique values
0 missing
91numeric937 unique values
0 missing
92numeric956 unique values
0 missing
93numeric1021 unique values
0 missing
94numeric604 unique values
0 missing
95numeric921 unique values
0 missing
96numeric979 unique values
0 missing
97numeric921 unique values
0 missing
98numeric812 unique values
0 missing
99numeric737 unique values
0 missing
100numeric546 unique values
0 missing
101numeric381 unique values
0 missing
102numeric92 unique values
0 missing
103numeric76 unique values
0 missing
104numeric67 unique values
0 missing
105numeric69 unique values
0 missing
106numeric65 unique values
0 missing
107numeric62 unique values
0 missing
108numeric66 unique values
0 missing
109numeric91 unique values
0 missing
110numeric130 unique values
0 missing
111numeric158 unique values
0 missing
112numeric299 unique values
0 missing
113numeric402 unique values
0 missing
114numeric299 unique values
0 missing
115numeric370 unique values
0 missing
116numeric657 unique values
0 missing
117numeric869 unique values
0 missing
118numeric995 unique values
0 missing
119numeric1056 unique values
0 missing
120numeric1088 unique values
0 missing
121numeric1089 unique values
0 missing
122numeric1085 unique values
0 missing
123numeric1062 unique values
0 missing
124numeric955 unique values
0 missing
125numeric924 unique values
0 missing
126numeric810 unique values
0 missing
127numeric901 unique values
0 missing
128numeric920 unique values
0 missing
129numeric945 unique values
0 missing
130numeric941 unique values
0 missing
131numeric892 unique values
0 missing
132numeric878 unique values
0 missing
133numeric875 unique values
0 missing
134numeric847 unique values
0 missing
135numeric829 unique values
0 missing
136numeric814 unique values
0 missing
137numeric730 unique values
0 missing
138numeric758 unique values
0 missing
139numeric731 unique values
0 missing
140numeric692 unique values
0 missing
141numeric661 unique values
0 missing
142numeric644 unique values
0 missing
143numeric606 unique values
0 missing
144numeric530 unique values
0 missing
145numeric408 unique values
0 missing
146numeric304 unique values
0 missing
147numeric155 unique values
0 missing
148numeric71 unique values
0 missing
149numeric57 unique values
0 missing
150numeric59 unique values
0 missing
151numeric67 unique values
0 missing
152numeric65 unique values
0 missing
153numeric68 unique values
0 missing
154numeric72 unique values
0 missing
155numeric61 unique values
0 missing
156numeric38 unique values
0 missing
157numeric31 unique values
0 missing
158numeric34 unique values
0 missing
159numeric43 unique values
0 missing
160numeric39 unique values
0 missing
161numeric41 unique values
0 missing
162numeric49 unique values
0 missing
163numeric64 unique values
0 missing
164numeric78 unique values
0 missing
165numeric161 unique values
0 missing
166numeric308 unique values
0 missing
167numeric411 unique values
0 missing
168numeric337 unique values
0 missing
169numeric153 unique values
0 missing
170numeric156 unique values
0 missing
171numeric304 unique values
0 missing
172numeric446 unique values
0 missing
173numeric428 unique values
0 missing
174numeric337 unique values
0 missing
175numeric333 unique values
0 missing
176numeric390 unique values
0 missing
177numeric461 unique values
0 missing
178numeric470 unique values
0 missing
179numeric486 unique values
0 missing
180numeric477 unique values
0 missing
181numeric473 unique values
0 missing
182numeric471 unique values
0 missing
183numeric454 unique values
0 missing
184numeric424 unique values
0 missing
185numeric410 unique values
0 missing
186numeric401 unique values
0 missing
187numeric390 unique values
0 missing
188numeric372 unique values
0 missing
189numeric246 unique values
0 missing
190numeric376 unique values
0 missing
191numeric382 unique values
0 missing
192numeric376 unique values
0 missing
193numeric356 unique values
0 missing
194numeric341 unique values
0 missing
195numeric333 unique values
0 missing
196numeric325 unique values
0 missing
197numeric318 unique values
0 missing
198numeric304 unique values
0 missing
199numeric302 unique values
0 missing
200numeric300 unique values
0 missing
201numeric278 unique values
0 missing
202numeric279 unique values
0 missing
203numeric244 unique values
0 missing
204numeric227 unique values
0 missing
205numeric233 unique values
0 missing
206numeric197 unique values
0 missing
207numeric183 unique values
0 missing
208numeric187 unique values
0 missing
209numeric186 unique values
0 missing
210numeric150 unique values
0 missing
211numeric151 unique values
0 missing
212numeric161 unique values
0 missing
213numeric134 unique values
0 missing
214numeric111 unique values
0 missing
215numeric123 unique values
0 missing
216numeric94 unique values
0 missing
217numeric63 unique values
0 missing
218numeric45 unique values
0 missing
219numeric40 unique values
0 missing

62 properties

9144
Number of instances (rows) of the dataset.
221
Number of attributes (columns) of the dataset.
8
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
220
Number of numeric attributes.
1
Number of nominal attributes.
-0.92
First quartile of skewness among attributes of the numeric type.
2596.07
Mean of means among attributes of the numeric type.
81.57
First quartile of standard deviation of attributes of the numeric type.
1
Average class difference between consecutive instances.
Average mutual information between the nominal attributes and the target attribute.
Second quartile (Median) of entropy among attributes.
2.08
Entropy of the target attribute values.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
-0.43
Second quartile (Median) of kurtosis among attributes of the numeric type.
0.02
Number of attributes divided by the number of instances.
8
Average number of distinct values among the attributes of the nominal type.
2049.13
Second quartile (Median) of means among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
-0.35
Mean skewness among attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
44.29
Percentage of instances belonging to the most frequent class.
292.13
Mean standard deviation of attributes of the numeric type.
-0.4
Second quartile (Median) of skewness among attributes of the numeric type.
4050
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
0
Percentage of binary attributes.
199.51
Second quartile (Median) of standard deviation of attributes of the numeric type.
Maximum entropy among attributes.
-0.84
Minimum kurtosis among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
0.74
Maximum kurtosis among attributes of the numeric type.
1004.29
Minimum of means among attributes of the numeric type.
0
Percentage of missing values.
0.12
Third quartile of kurtosis among attributes of the numeric type.
5988.66
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
99.55
Percentage of numeric attributes.
4164.4
Third quartile of means among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
8
The minimal number of distinct values among attributes of the nominal type.
0.45
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
8
The maximum number of distinct values among attributes of the nominal type.
-1
Minimum skewness among attributes of the numeric type.
First quartile of entropy among attributes.
0.07
Third quartile of skewness among attributes of the numeric type.
0.97
Maximum skewness among attributes of the numeric type.
5.95
Minimum standard deviation of attributes of the numeric type.
-0.61
First quartile of kurtosis among attributes of the numeric type.
481.79
Third quartile of standard deviation of attributes of the numeric type.
1017.16
Maximum standard deviation of attributes of the numeric type.
0.22
Percentage of instances belonging to the least frequent class.
20
Number of instances belonging to the least frequent class.
1205.18
First quartile of means among attributes of the numeric type.
0
Standard deviation of the number of distinct values among attributes of the nominal type.
Average entropy of the attributes.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
-0.24
Mean kurtosis among attributes of the numeric type.

0 tasks

Define a new task