Data
BNG(autos,nominal,1000000)

BNG(autos,nominal,1000000)

active ARFF Publicly available Visibility: public Uploaded 08-04-2014 by Jan van Rijn
0 likes downloaded by 3 people , 3 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit

26 features

symboling (target)nominal7 unique values
0 missing
normalized-lossesnominal3 unique values
0 missing
makenominal22 unique values
0 missing
fuel-typenominal2 unique values
0 missing
aspirationnominal2 unique values
0 missing
num-of-doorsnominal2 unique values
0 missing
body-stylenominal5 unique values
0 missing
drive-wheelsnominal3 unique values
0 missing
engine-locationnominal2 unique values
0 missing
wheel-basenominal3 unique values
0 missing
lengthnominal3 unique values
0 missing
widthnominal3 unique values
0 missing
heightnominal3 unique values
0 missing
curb-weightnominal3 unique values
0 missing
engine-typenominal7 unique values
0 missing
num-of-cylindersnominal7 unique values
0 missing
engine-sizenominal3 unique values
0 missing
fuel-systemnominal8 unique values
0 missing
borenominal3 unique values
0 missing
strokenominal3 unique values
0 missing
compression-rationominal3 unique values
0 missing
horsepowernominal3 unique values
0 missing
peak-rpmnominal3 unique values
0 missing
city-mpgnominal3 unique values
0 missing
highway-mpgnominal3 unique values
0 missing
pricenominal3 unique values
0 missing

108 properties

1000000
Number of instances (rows) of the dataset.
26
Number of attributes (columns) of the dataset.
7
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
0
Number of numeric attributes.
26
Number of nominal attributes.
0
Maximum kurtosis among attributes of the numeric type.
0.03
Minimal mutual information between the nominal attributes and the target attribute.
0.06
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
0.22
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.21
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump
0
Maximum of means among attributes of the numeric type.
2
The minimal number of distinct values among attributes of the nominal type.
0
Second quartile (Median) of skewness among attributes of the numeric type.
0.72
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.32
The predictive accuracy obtained by always predicting the majority class.
0.39
Maximum mutual information between the nominal attributes and the target attribute.
0
Minimum skewness among attributes of the numeric type.
15.38
Percentage of binary attributes.
0
Second quartile (Median) of standard deviation of attributes of the numeric type.
0.84
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0
Number of attributes divided by the number of instances.
22
The maximum number of distinct values among attributes of the nominal type.
0
Minimum standard deviation of attributes of the numeric type.
0
Percentage of instances having missing values.
1.52
Third quartile of entropy among attributes.
0.23
Average class difference between consecutive instances.
0.28
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
22.08
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
0
Maximum skewness among attributes of the numeric type.
0
Percentage of instances belonging to the least frequent class.
0
Percentage of missing values.
0
Third quartile of kurtosis among attributes of the numeric type.
0.9
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.63
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.9
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .00001
0
Maximum standard deviation of attributes of the numeric type.
2430
Number of instances belonging to the least frequent class.
0
Percentage of numeric attributes.
0
Third quartile of means among attributes of the numeric type.
0.27
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.84
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.21
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .00001
1.46
Average entropy of the attributes.
0.91
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes
100
Percentage of nominal attributes.
0.12
Third quartile of mutual information between the nominal attributes and the target attribute.
0.64
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.28
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.73
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .00001
0
Mean kurtosis among attributes of the numeric type.
0.31
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes
1.13
First quartile of entropy among attributes.
0
Third quartile of skewness among attributes of the numeric type.
0.9
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.63
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.9
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .0001
0
Mean of means among attributes of the numeric type.
0.6
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes
0
First quartile of kurtosis among attributes of the numeric type.
0
Third quartile of standard deviation of attributes of the numeric type.
0.27
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.84
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.21
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .0001
0.1
Average mutual information between the nominal attributes and the target attribute.
12.99
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
0
First quartile of means among attributes of the numeric type.
0.93
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.64
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.28
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.73
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .0001
4.2
Average number of distinct values among the attributes of the nominal type.
4
Number of binary attributes.
0.04
First quartile of mutual information between the nominal attributes and the target attribute.
0.22
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.9
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.63
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.9
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .001
0
Mean skewness among attributes of the numeric type.
0
First quartile of skewness among attributes of the numeric type.
0.72
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.27
Error rate achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
4.03
Standard deviation of the number of distinct values among attributes of the nominal type.
0.21
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .001
0
Mean standard deviation of attributes of the numeric type.
0
First quartile of standard deviation of attributes of the numeric type.
0.93
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.64
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.93
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk
0.73
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .001
32.33
Percentage of instances belonging to the most frequent class.
0.19
Minimal entropy among attributes.
1.46
Second quartile (Median) of entropy among attributes.
0.22
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 2
2.3
Entropy of the target attribute values.
0.21
Error rate achieved by the landmarker weka.classifiers.lazy.IBk
323286
Number of instances belonging to the most frequent class.
0
Minimum kurtosis among attributes of the numeric type.
0
Second quartile (Median) of kurtosis among attributes of the numeric type.
0.72
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.7
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump
0.73
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk
4.31
Maximum entropy among attributes.
0
Minimum of means among attributes of the numeric type.
0
Second quartile (Median) of means among attributes of the numeric type.
0.93
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.55
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump

8 tasks

18 runs - estimation_procedure: 10-fold Crossvalidation - evaluation_measure: predictive_accuracy - target_feature: symboling
1 runs - estimation_procedure: 33% Holdout set - evaluation_measure: predictive_accuracy - target_feature: symboling
0 runs - estimation_procedure: 10 times 10-fold Crossvalidation - evaluation_measure: predictive_accuracy - target_feature: symboling
0 runs - estimation_procedure: 5 times 2-fold Crossvalidation - evaluation_measure: predictive_accuracy - target_feature: symboling
0 runs - estimation_procedure: 10-fold Learning Curve - evaluation_measure: predictive_accuracy - target_feature: symboling
44 runs - estimation_procedure: Interleaved Test then Train - target_feature: symboling
Define a new task