Data
analcatdata_halloffame

analcatdata_halloffame

active ARFF Publicly available Visibility: public Uploaded 04-10-2014 by Joaquin Vanschoren
0 likes downloaded by 6 people , 6 total downloads 0 issues 0 downvotes
  • mythbusting_1 study_1 study_144 study_15 study_20
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Author: Source: Unknown - Date unknown Please cite: Binarized version of the original data set (see version 1). The multi-class target feature is converted to a two-class nominal target feature by re-labeling the majority class as positive ('P') and all others as negative ('N'). Originally converted by Quan Sun.

18 features

binaryClass (target)nominal2 unique values
0 missing
Player (ignore)nominal1339 unique values
0 missing
Number_seasonsnumeric17 unique values
0 missing
Games_playednumeric981 unique values
0 missing
At_batsnumeric1239 unique values
0 missing
Runsnumeric812 unique values
0 missing
Hitsnumeric999 unique values
0 missing
Doublesnumeric418 unique values
0 missing
Triplesnumeric180 unique values
0 missing
Home_runsnumeric291 unique values
0 missing
RBIsnumeric795 unique values
0 missing
Walksnumeric712 unique values
0 missing
Strikeoutsnumeric722 unique values
20 missing
Batting_averagenumeric143 unique values
0 missing
On_base_pctnumeric176 unique values
0 missing
Slugging_pctnumeric274 unique values
0 missing
Fielding_avenumeric125 unique values
0 missing
Positionnominal7 unique values
0 missing

107 properties

1340
Number of instances (rows) of the dataset.
18
Number of attributes (columns) of the dataset.
2
Number of distinct values of the target attribute (if it is nominal).
20
Number of missing values in the dataset.
20
Number of instances with at least one value missing.
15
Number of numeric attributes.
3
Number of nominal attributes.
0.27
Minimum of means among attributes of the numeric type.
0.01
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
0.06
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.08
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump
8.03
Maximum kurtosis among attributes of the numeric type.
0.01
Minimal mutual information between the nominal attributes and the target attribute.
0.96
Second quartile (Median) of skewness among attributes of the numeric type.
0.57
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.59
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump
4534.61
Maximum of means among attributes of the numeric type.
2
The minimal number of distinct values among attributes of the nominal type.
5.56
Percentage of binary attributes.
116.58
Second quartile (Median) of standard deviation of attributes of the numeric type.
0.77
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.01
Number of attributes divided by the number of instances.
0.01
Maximum mutual information between the nominal attributes and the target attribute.
-1.87
Minimum skewness among attributes of the numeric type.
1.49
Percentage of instances having missing values.
2.43
Third quartile of entropy among attributes.
0.08
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
44
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
7
The maximum number of distinct values among attributes of the nominal type.
0.03
Minimum standard deviation of attributes of the numeric type.
0.08
Percentage of missing values.
3.55
Third quartile of kurtosis among attributes of the numeric type.
0.84
Average class difference between consecutive instances.
0.54
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.87
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .00001
2.47
Maximum skewness among attributes of the numeric type.
9.33
Percentage of instances belonging to the least frequent class.
83.33
Percentage of numeric attributes.
635.31
Third quartile of means among attributes of the numeric type.
0.84
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.77
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.05
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .00001
2094.19
Maximum standard deviation of attributes of the numeric type.
125
Number of instances belonging to the least frequent class.
16.67
Percentage of nominal attributes.
0.01
Third quartile of mutual information between the nominal attributes and the target attribute.
0.06
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.08
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.67
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .00001
2.43
Average entropy of the attributes.
0.95
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes
2.43
First quartile of entropy among attributes.
1.52
Third quartile of skewness among attributes of the numeric type.
0.59
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.54
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.87
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .0001
2.14
Mean kurtosis among attributes of the numeric type.
0.12
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes
0.63
First quartile of kurtosis among attributes of the numeric type.
376.4
Third quartile of standard deviation of attributes of the numeric type.
0.84
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.77
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.05
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .0001
637.42
Mean of means among attributes of the numeric type.
0.5
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes
0.97
First quartile of means among attributes of the numeric type.
0.82
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.06
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.08
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.67
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .0001
0.01
Average mutual information between the nominal attributes and the target attribute.
1
Number of binary attributes.
0.01
First quartile of mutual information between the nominal attributes and the target attribute.
0.06
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.59
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.54
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.87
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .001
237.59
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
0.49
First quartile of skewness among attributes of the numeric type.
0.57
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.84
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
3.54
Standard deviation of the number of distinct values among attributes of the nominal type.
0.05
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .001
4.5
Average number of distinct values among the attributes of the nominal type.
0.06
First quartile of standard deviation of attributes of the numeric type.
0.82
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.06
Error rate achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.79
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk
0.67
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .001
0.83
Mean skewness among attributes of the numeric type.
2.43
Second quartile (Median) of entropy among attributes.
0.06
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.59
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.06
Error rate achieved by the landmarker weka.classifiers.lazy.IBk
90.67
Percentage of instances belonging to the most frequent class.
324.93
Mean standard deviation of attributes of the numeric type.
1.09
Second quartile (Median) of kurtosis among attributes of the numeric type.
0.57
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.45
Entropy of the target attribute values.
0.61
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk
1215
Number of instances belonging to the most frequent class.
2.43
Minimal entropy among attributes.
203.23
Second quartile (Median) of means among attributes of the numeric type.
0.82
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.84
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump
2.43
Maximum entropy among attributes.
0.25
Minimum kurtosis among attributes of the numeric type.

7 tasks

131 runs - estimation_procedure: 10-fold Crossvalidation - evaluation_measure: predictive_accuracy - target_feature: binaryClass
0 runs - estimation_procedure: 10 times 10-fold Crossvalidation - evaluation_measure: predictive_accuracy - target_feature: binaryClass
0 runs - estimation_procedure: 33% Holdout set - evaluation_measure: predictive_accuracy - target_feature: binaryClass
0 runs - estimation_procedure: Interleaved Test then Train - target_feature: binaryClass
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task