Data
vehicle

vehicle

active ARFF Publicly available Visibility: public Uploaded 04-10-2014 by Joaquin Vanschoren
0 likes downloaded by 7 people , 8 total downloads 0 issues 0 downvotes
  • mythbusting_1 study_1 study_15 study_20 study_41 study_7
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Author: Source: Unknown - Date unknown Please cite: Binarized version of the original data set (see version 1). The multi-class target feature is converted to a two-class nominal target feature by re-labeling the majority class as positive ('P') and all others as negative ('N'). Originally converted by Quan Sun.

19 features

binaryClass (target)nominal2 unique values
0 missing
COMPACTNESSnumeric44 unique values
0 missing
CIRCULARITYnumeric27 unique values
0 missing
DISTANCE CIRCULARITYnumeric63 unique values
0 missing
RADIUS RATIOnumeric134 unique values
0 missing
PR.AXIS ASPECT RATIOnumeric37 unique values
0 missing
MAX.LENGTH ASPECT RATIOnumeric21 unique values
0 missing
SCATTER RATIOnumeric131 unique values
0 missing
ELONGATEDNESSnumeric35 unique values
0 missing
PR.AXIS RECTANGULARITYnumeric13 unique values
0 missing
MAX.LENGTH RECTANGULARITYnumeric66 unique values
0 missing
SCALED VARIANCE_MAJORnumeric128 unique values
0 missing
SCALED VARIANCE_MINORnumeric424 unique values
0 missing
SCALED RADIUS OF GYRATIONnumeric143 unique values
0 missing
SKEWNESS ABOUT_MAJORnumeric39 unique values
0 missing
SKEWNESS ABOUT_MINORnumeric23 unique values
0 missing
KURTOSIS ABOUT_MAJORnumeric41 unique values
0 missing
KURTOSIS ABOUT_MINORnumeric30 unique values
0 missing
HOLLOWS RATIOnumeric31 unique values
0 missing

107 properties

846
Number of instances (rows) of the dataset.
19
Number of attributes (columns) of the dataset.
2
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
18
Number of numeric attributes.
1
Number of nominal attributes.
0.94
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.05
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .00001
176.69
Maximum standard deviation of attributes of the numeric type.
25.77
Percentage of instances belonging to the least frequent class.
94.74
Percentage of numeric attributes.
178.18
Third quartile of means among attributes of the numeric type.
0.91
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.05
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.86
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .00001
Average entropy of the attributes.
218
Number of instances belonging to the least frequent class.
5.26
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
0.07
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.81
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.87
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.95
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .0001
5.15
Mean kurtosis among attributes of the numeric type.
0.86
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes
First quartile of entropy among attributes.
0.79
Third quartile of skewness among attributes of the numeric type.
0.91
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.94
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.05
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .0001
117.63
Mean of means among attributes of the numeric type.
0.21
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes
-0.78
First quartile of kurtosis among attributes of the numeric type.
31.68
Third quartile of standard deviation of attributes of the numeric type.
0.07
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.05
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.86
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .0001
Average mutual information between the nominal attributes and the target attribute.
0.44
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes
35.85
First quartile of means among attributes of the numeric type.
0.95
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.81
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.87
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.95
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .001
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
1
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
0.06
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.84
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.91
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0
Standard deviation of the number of distinct values among attributes of the nominal type.
0.05
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .001
2
Average number of distinct values among the attributes of the nominal type.
0.25
First quartile of skewness among attributes of the numeric type.
0.95
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.07
Error rate achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.92
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk
0.86
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .001
1.04
Mean skewness among attributes of the numeric type.
6.17
First quartile of standard deviation of attributes of the numeric type.
0.06
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.81
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.07
Error rate achieved by the landmarker weka.classifiers.lazy.IBk
74.23
Percentage of instances belonging to the most frequent class.
22.77
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of entropy among attributes.
0.84
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.82
Entropy of the target attribute values.
0.83
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk
628
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
-0.44
Second quartile (Median) of kurtosis among attributes of the numeric type.
0.95
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.79
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump
Maximum entropy among attributes.
-0.98
Minimum kurtosis among attributes of the numeric type.
87.88
Second quartile (Median) of means among attributes of the numeric type.
0.06
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.27
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump
58.38
Maximum kurtosis among attributes of the numeric type.
6.38
Minimum of means among attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
0.84
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.28
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump
439.91
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0.5
Second quartile (Median) of skewness among attributes of the numeric type.
0.94
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.02
Number of attributes divided by the number of instances.
Maximum mutual information between the nominal attributes and the target attribute.
2
The minimal number of distinct values among attributes of the nominal type.
5.26
Percentage of binary attributes.
8.06
Second quartile (Median) of standard deviation of attributes of the numeric type.
0.05
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
2
The maximum number of distinct values among attributes of the nominal type.
-0.23
Minimum skewness among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
0.87
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.95
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .00001
6.78
Maximum skewness among attributes of the numeric type.
2.59
Minimum standard deviation of attributes of the numeric type.
0
Percentage of missing values.
0.16
Third quartile of kurtosis among attributes of the numeric type.
0.62
Average class difference between consecutive instances.

7 tasks

599 runs - estimation_procedure: 10-fold Crossvalidation - evaluation_measure: predictive_accuracy - target_feature: binaryClass
211 runs - estimation_procedure: 10 times 10-fold Crossvalidation - evaluation_measure: predictive_accuracy - target_feature: binaryClass
0 runs - estimation_procedure: 33% Holdout set - target_feature: binaryClass
0 runs - estimation_procedure: Interleaved Test then Train - target_feature: binaryClass
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task