Flow
sklearn.tree._classes.ExtraTreeRegressor

sklearn.tree._classes.ExtraTreeRegressor

Visibility: public Uploaded 26-03-2021 by Tan Zheng sklearn==0.23.2 numpy>=1.6.1 scipy>=0.9 1 runs
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • openml-python python scikit-learn sklearn sklearn_0.23.2
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
An extremely randomized tree regressor. Extra-trees differ from classic decision trees in the way they are built. When looking for the best split to separate the samples of a node into two groups, random splits are drawn for each of the `max_features` randomly selected features and the best split among those is chosen. When `max_features` is set 1, this amounts to building a totally random decision tree. Warning: Extra-trees should only be used within ensemble methods.

Parameters

ccp_alphaComplexity parameter used for Minimal Cost-Complexity Pruning. The subtree with the largest cost complexity that is smaller than ``ccp_alpha`` will be chosen. By default, no pruning is performed. See :ref:`minimal_cost_complexity_pruning` for details .. versionadded:: 0.22default: 0.0
criteriondefault: "mse"
max_depthThe maximum depth of the tree. If None, then nodes are expanded until all leaves are pure or until all leaves contain less than min_samples_split samplesdefault: null
max_featuresThe number of features to consider when looking for the best split: - If int, then consider `max_features` features at each split - If float, then `max_features` is a fraction and `int(max_features * n_features)` features are considered at each split - If "auto", then `max_features=n_features` - If "sqrt", then `max_features=sqrt(n_features)` - If "log2", then `max_features=log2(n_features)` - If None, then `max_features=n_features` Note: the search for a split does not stop until at least one valid partition of the node samples is found, even if it requires to effectively inspect more than ``max_features`` featuresdefault: "auto"
max_leaf_nodesGrow a tree with ``max_leaf_nodes`` in best-first fashion Best nodes are defined as relative reduction in impurity If None then unlimited number of leaf nodesdefault: null
min_impurity_decreaseA node will be split if this split induces a decrease of the impurity greater than or equal to this value The weighted impurity decrease equation is the following:: N_t / N * (impurity - N_t_R / N_t * right_impurity - N_t_L / N_t * left_impurity) where ``N`` is the total number of samples, ``N_t`` is the number of samples at the current node, ``N_t_L`` is the number of samples in the left child, and ``N_t_R`` is the number of samples in the right child ``N``, ``N_t``, ``N_t_R`` and ``N_t_L`` all refer to the weighted sum, if ``sample_weight`` is passed .. versionadded:: 0.19default: 0.0
min_impurity_splitThreshold for early stopping in tree growth. A node will split if its impurity is above the threshold, otherwise it is a leaf .. deprecated:: 0.19 ``min_impurity_split`` has been deprecated in favor of ``min_impurity_decrease`` in 0.19. The default value of ``min_impurity_split`` has changed from 1e-7 to 0 in 0.23 and it will be removed in 0.25. Use ``min_impurity_decrease`` insteaddefault: null
min_samples_leafThe minimum number of samples required to be at a leaf node A split point at any depth will only be considered if it leaves at least ``min_samples_leaf`` training samples in each of the left and right branches. This may have the effect of smoothing the model, especially in regression - If int, then consider `min_samples_leaf` as the minimum number - If float, then `min_samples_leaf` is a fraction and `ceil(min_samples_leaf * n_samples)` are the minimum number of samples for each node .. versionchanged:: 0.18 Added float values for fractionsdefault: 1
min_samples_splitThe minimum number of samples required to split an internal node: - If int, then consider `min_samples_split` as the minimum number - If float, then `min_samples_split` is a fraction and `ceil(min_samples_split * n_samples)` are the minimum number of samples for each split .. versionchanged:: 0.18 Added float values for fractionsdefault: 2
min_weight_fraction_leafThe minimum weighted fraction of the sum total of weights (of all the input samples) required to be at a leaf node. Samples have equal weight when sample_weight is not provideddefault: 0.0
random_stateUsed to pick randomly the `max_features` used at each split See :term:`Glossary ` for detailsdefault: null
splitterdefault: "random"

0
Runs

List all runs
Parameter:
Rendering chart
Rendering table