Flow
sklearn.preprocessing._data.RobustScaler

sklearn.preprocessing._data.RobustScaler

Visibility: public Uploaded 30-06-2021 by Salomé Maltese sklearn==0.24.1 numpy>=1.13.3 scipy>=0.19.1 joblib>=0.11 threadpoolctl>=2.0.0 0 runs
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • openml-python python scikit-learn sklearn sklearn_0.24.1
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Scale features using statistics that are robust to outliers. This Scaler removes the median and scales the data according to the quantile range (defaults to IQR: Interquartile Range). The IQR is the range between the 1st quartile (25th quantile) and the 3rd quartile (75th quantile). Centering and scaling happen independently on each feature by computing the relevant statistics on the samples in the training set. Median and interquartile range are then stored to be used on later data using the ``transform`` method. Standardization of a dataset is a common requirement for many machine learning estimators. Typically this is done by removing the mean and scaling to unit variance. However, outliers can often influence the sample mean / variance in a negative way. In such cases, the median and the interquartile range often give better results. .. versionadded:: 0.17

Parameters

0
Runs

List all runs
Parameter:
Rendering chart
Rendering table