2 sklearn.pipeline.FeatureUnion(votingclassifier=sklearn.ensemble.voting_classifier.VotingClassifier(dtc=sklearn.tree.tree.DecisionTreeClassifier,etc=sklearn.tree.tree.ExtraTreeClassifier),functiontransformer=sklearn.preprocessing._function_transformer.FunctionTransformer) 0 0 18893 2021-01-13T18:23:05Z Concatenates results of multiple transformer objects. This estimator applies a list of transformer objects in parallel to the input data, then concatenates the results. This is useful to combine several feature extraction mechanisms into a single transformer. Parameters of the transformers may be set using its name and the parameter name separated by a '__'. A transformer may be replaced entirely by setting the parameter with its name to another transformer, or removed by setting to ``None``. sklearn.pipeline.FeatureUnion(votingclassifier=sklearn.ensemble.voting_classifier.VotingClassifier(dtc=sklearn.tree.tree.DecisionTreeClassifier,etc=sklearn.tree.tree.ExtraTreeClassifier),functiontransformer=sklearn.preprocessing._function_transformer.FunctionTransformer) openml==0.12.2,sklearn==0.18.1 0 sklearn==0.18.1 numpy>=1.6.1 scipy>=0.9 public