Flow
sklearn.pipeline.Pipeline(imputation=hyperimp.utils.preprocessing.ConditionalImputer2,hotencoding=sklearn.preprocessing.data.OneHotEncoder,variencethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold,clf=sklearn.ensemble.forest.RandomForestClassifier)

sklearn.pipeline.Pipeline(imputation=hyperimp.utils.preprocessing.ConditionalImputer2,hotencoding=sklearn.preprocessing.data.OneHotEncoder,variencethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold,clf=sklearn.ensemble.forest.RandomForestClassifier)

Visibility: public Uploaded 14-04-2018 by Hilde Weerts sklearn==0.19.1 numpy>=1.6.1 scipy>=0.9 63950 runs
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • openml-python python scikit-learn sklearn sklearn_0.19.1 study_98
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Automatically created scikit-learn flow.

Parameters

memorydefault: null
stepsdefault: [{"oml-python:serialized_object": "component_reference", "value": {"key": "imputation", "step_name": "imputation"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "hotencoding", "step_name": "hotencoding"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "variencethreshold", "step_name": "variencethreshold"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "clf", "step_name": "clf"}}]

0
Runs

List all runs
Parameter:
Rendering chart
Rendering table