OpenML
Filter results by:
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
754 runs0 likes10 downloads10 reach6 impact
60 instances - 16 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
736 runs0 likes5 downloads5 reach6 impact
92 instances - 6 features - 2 classes - 26 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
817 runs0 likes8 downloads8 reach7 impact
400 instances - 7 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
819 runs0 likes10 downloads10 reach7 impact
500 instances - 8 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
726 runs0 likes6 downloads6 reach6 impact
61 instances - 3 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
801 runs0 likes8 downloads8 reach7 impact
500 instances - 51 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
808 runs1 likes9 downloads10 reach6 impact
100 instances - 26 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
1164 runs0 likes7 downloads7 reach7 impact
222 instances - 3 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
813 runs0 likes7 downloads7 reach7 impact
500 instances - 26 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
787 runs0 likes7 downloads7 reach6 impact
73 instances - 6 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
778 runs0 likes7 downloads7 reach6 impact
66 instances - 6 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
786 runs0 likes7 downloads7 reach7 impact
500 instances - 6 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
1266 runs0 likes11 downloads11 reach6 impact
131 instances - 4 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). The multi-class target feature is converted to a two-class nominal target feature by re-labeling the majority class as positive ('P') and…
103 runs0 likes5 downloads5 reach6 impact
107 instances - 13 features - 2 classes - 71 missing values
Binarized version of the original data set (see version 1). The multi-class target feature is converted to a two-class nominal target feature by re-labeling the majority class as positive ('P') and…
104 runs0 likes6 downloads6 reach7 impact
379 instances - 9 features - 2 classes - 1368 missing values
Binarized version of the original data set (see version 1). The multi-class target feature is converted to a two-class nominal target feature by re-labeling the majority class as positive ('P') and…
169 runs0 likes8 downloads8 reach8 impact
600 instances - 62 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). The multi-class target feature is converted to a two-class nominal target feature by re-labeling the majority class as positive ('P') and…
772 runs0 likes7 downloads7 reach6 impact
214 instances - 10 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). The multi-class target feature is converted to a two-class nominal target feature by re-labeling the majority class as positive ('P') and…
748 runs0 likes8 downloads8 reach6 impact
148 instances - 19 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). The multi-class target feature is converted to a two-class nominal target feature by re-labeling the majority class as positive ('P') and…
737 runs0 likes9 downloads9 reach7 impact
3772 instances - 30 features - 2 classes - 6064 missing values
Binarized version of the original data set (see version 1). The multi-class target feature is converted to a two-class nominal target feature by re-labeling the majority class as positive ('P') and…
106 runs0 likes5 downloads5 reach6 impact
76 instances - 46 features - 2 classes - 22 missing values
Binarized version of the original data set (see version 1). The multi-class target feature is converted to a two-class nominal target feature by re-labeling the majority class as positive ('P') and…
733 runs0 likes9 downloads9 reach8 impact
7485 instances - 56 features - 2 classes - 32427 missing values
Binarized version of the original data set (see version 1). The multi-class target feature is converted to a two-class nominal target feature by re-labeling the majority class as positive ('P') and…
752 runs0 likes7 downloads7 reach7 impact
339 instances - 18 features - 2 classes - 225 missing values
Binarized version of the original data set (see version 1). The multi-class target feature is converted to a two-class nominal target feature by re-labeling the majority class as positive ('P') and…
815 runs0 likes8 downloads8 reach7 impact
336 instances - 8 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). The multi-class target feature is converted to a two-class nominal target feature by re-labeling the majority class as positive ('P') and…
140 runs0 likes6 downloads6 reach7 impact
194 instances - 30 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). The multi-class target feature is converted to a two-class nominal target feature by re-labeling the majority class as positive ('P') and…
104 runs0 likes3 downloads3 reach6 impact
57 instances - 12 features - 2 classes - 1 missing values
Binarized version of the original data set (see version 1). The multi-class target feature is converted to a two-class nominal target feature by re-labeling the majority class as positive ('P') and…
721 runs0 likes5 downloads5 reach7 impact
226 instances - 70 features - 2 classes - 317 missing values
Binarized version of the original data set (see version 1). The multi-class target feature is converted to a two-class nominal target feature by re-labeling the majority class as positive ('P') and…
732 runs0 likes5 downloads5 reach6 impact
63 instances - 32 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). The multi-class target feature is converted to a two-class nominal target feature by re-labeling the majority class as positive ('P') and…
723 runs0 likes6 downloads6 reach7 impact
366 instances - 35 features - 2 classes - 8 missing values
Binarized version of the original data set (see version 1). The multi-class target feature is converted to a two-class nominal target feature by re-labeling the majority class as positive ('P') and…
1147 runs0 likes10 downloads10 reach6 impact
138 instances - 3 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). The multi-class target feature is converted to a two-class nominal target feature by re-labeling the majority class as positive ('P') and…
774 runs0 likes9 downloads9 reach7 impact
797 instances - 5 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). The multi-class target feature is converted to a two-class nominal target feature by re-labeling the majority class as positive ('P') and…
744 runs0 likes7 downloads7 reach6 impact
72 instances - 4 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). The multi-class target feature is converted to a two-class nominal target feature by re-labeling the majority class as positive ('P') and…
792 runs0 likes10 downloads10 reach7 impact
214 instances - 10 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). The multi-class target feature is converted to a two-class nominal target feature by re-labeling the majority class as positive ('P') and…
777 runs0 likes8 downloads8 reach7 impact
625 instances - 5 features - 2 classes - 0 missing values
analcatdata A collection of data sets used in the book "Analyzing Categorical Data," by Jeffrey S. Simonoff, Springer-Verlag, New York, 2003. The submission consists of a zip file containing two…
103 runs0 likes4 downloads4 reach6 impact
92 instances - 11 features - 2 classes - 0 missing values
February 23, 1982 The 1982 annual meetings of the American Statistical Association (ASA) will be held August 16-19, 1982 in Cincinnati. At that meeting, the ASA Committee on Statistical Graphics plans…
759 runs0 likes9 downloads9 reach14 impact
209 instances - 9 features - 2 classes - 15 missing values
87 persons with lupus nephritis. Followed up 15+ years. 35 deaths. Var = duration of disease. Over 40 baseline variables avaiable from authors. Description : For description of this data set arising…
735 runs0 likes7 downloads7 reach6 impact
87 instances - 4 features - 2 classes - 0 missing values
PRO FOOTBALL SCORES (raw data appears after the description below) How well do the oddsmakers of Las Vegas predict the outcome of professional football games? Is there really a home field advantage -…
15930 runs0 likes19 downloads19 reach17 impact
672 instances - 10 features - 2 classes - 1200 missing values
analcatdata A collection of data sets used in the book "Analyzing Categorical Data," by Jeffrey S. Simonoff, Springer-Verlag, New York, 2003. The submission consists of a zip file containing two…
698 runs0 likes6 downloads6 reach6 impact
97 instances - 11 features - 2 classes - 0 missing values
Schizophrenic Eye-Tracking Data in Rubin and Wu (1997) Biometrics. Yingnian Wu (wu@hustat.harvard.edu) [14/Oct/97] Information about the dataset CLASSTYPE: nominal CLASSINDEX: last
748 runs0 likes7 downloads7 reach14 impact
340 instances - 15 features - 2 classes - 834 missing values
analcatdata A collection of data sets used in the book "Analyzing Categorical Data," by Jeffrey S. Simonoff, Springer-Verlag, New York, 2003. The submission consists of a zip file containing two…
117 runs0 likes5 downloads5 reach6 impact
50 instances - 7 features - 2 classes - 0 missing values
analcatdata A collection of data sets used in the book "Analyzing Categorical Data," by Jeffrey S. Simonoff, Springer-Verlag, New York, 2003. The submission consists of a zip file containing two…
102 runs0 likes4 downloads4 reach6 impact
52 instances - 10 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
102 runs0 likes3 downloads3 reach7 impact
527 instances - 39 features - 2 classes - 560 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
767 runs0 likes8 downloads8 reach7 impact
189 instances - 10 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). The multi-class target feature is converted to a two-class nominal target feature by re-labeling the majority class as positive ('P') and…
143 runs1 likes10 downloads11 reach7 impact
531 instances - 103 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). The multi-class target feature is converted to a two-class nominal target feature by re-labeling the majority class as positive ('P') and…
1032 runs0 likes7 downloads7 reach7 impact
151 instances - 6 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). The multi-class target feature is converted to a two-class nominal target feature by re-labeling the majority class as positive ('P') and…
135 runs0 likes9 downloads9 reach7 impact
3190 instances - 62 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). The multi-class target feature is converted to a two-class nominal target feature by re-labeling the majority class as positive ('P') and…
173 runs0 likes6 downloads6 reach14 impact
106 instances - 59 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). The multi-class target feature is converted to a two-class nominal target feature by re-labeling the majority class as positive ('P') and…
721 runs0 likes5 downloads5 reach7 impact
412 instances - 9 features - 2 classes - 96 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
117 runs0 likes7 downloads7 reach6 impact
50 instances - 5 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
814 runs0 likes7 downloads7 reach7 impact
500 instances - 11 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
744 runs0 likes5 downloads5 reach6 impact
130 instances - 10 features - 2 classes - 97 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
765 runs0 likes8 downloads8 reach6 impact
76 instances - 7 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
812 runs0 likes7 downloads7 reach7 impact
559 instances - 5 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
760 runs0 likes6 downloads6 reach6 impact
88 instances - 3 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
774 runs0 likes9 downloads9 reach7 impact
559 instances - 5 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
769 runs0 likes7 downloads7 reach7 impact
559 instances - 5 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
779 runs0 likes8 downloads8 reach7 impact
559 instances - 5 features - 2 classes - 0 missing values
analcatdata A collection of data sets used in the book "Analyzing Categorical Data," by Jeffrey S. Simonoff, Springer-Verlag, New York, 2003. The submission consists of a zip file containing two…
692 runs0 likes6 downloads6 reach6 impact
83 instances - 4 features - 2 classes - 0 missing values
analcatdata A collection of data sets used in the book "Analyzing Categorical Data," by Jeffrey S. Simonoff, Springer-Verlag, New York, 2003. The submission consists of a zip file containing two…
1028 runs0 likes8 downloads8 reach6 impact
132 instances - 4 features - 2 classes - 0 missing values
analcatdata A collection of data sets used in the book "Analyzing Categorical Data," by Jeffrey S. Simonoff, Springer-Verlag, New York, 2003. The submission consists of a zip file containing two…
1114 runs0 likes9 downloads9 reach6 impact
120 instances - 4 features - 2 classes - 0 missing values
analcatdata A collection of data sets used in the book "Analyzing Categorical Data," by Jeffrey S. Simonoff, Springer-Verlag, New York, 2003. The submission consists of a zip file containing two…
886 runs0 likes8 downloads8 reach7 impact
264 instances - 5 features - 2 classes - 0 missing values
Data on educational transitions for a sample of 500 Irish schoolchildren aged 11 in 1967. The data were collected by Greaney and Kelleghan (1984), and reanalyzed by Raftery and Hout (1985, 1993). ###…
16022 runs0 likes15 downloads15 reach17 impact
500 instances - 6 features - 2 classes - 32 missing values
Data file: This data from "Problem-Solving" on "backache in pregnancy" is in somewhat different format from that listed in the book. Each integer is preceded by a space. This makes it easier to read.…
174 runs0 likes6 downloads6 reach7 impact
180 instances - 33 features - 2 classes - 0 missing values
Dataset from `Pattern Recognition and Neural Networks' by B.D. Ripley. Cambridge University Press (1996) ISBN 0-521-46086-7. The background to the datasets is described in section 1.4; this file…
1105 runs0 likes7 downloads7 reach7 impact
250 instances - 3 features - 2 classes - 0 missing values
analcatdata A collection of data sets used in the book "Analyzing Categorical Data," by Jeffrey S. Simonoff, Springer-Verlag, New York, 2003. The submission consists of a zip file containing two…
1032 runs0 likes10 downloads10 reach6 impact
100 instances - 7 features - 2 classes - 0 missing values
One of the NASA Metrics Data Program defect data sets. The specific type of software is unknown. Data comes from McCabe and Halstead features extractors of source code. These features were defined in…
777 runs0 likes9 downloads9 reach7 impact
458 instances - 40 features - 2 classes - 0 missing values
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% This is a PROMISE Software Engineering Repository data set made publicly available in order to encourage repeatable,…
765 runs0 likes7 downloads7 reach6 impact
145 instances - 95 features - 2 classes - 0 missing values
One of the NASA Metrics Data Program defect data sets. Data from flight software for earth orbiting satellite. Data comes from McCabe and Halstead features extractors of source code. These features…
144349 runs1 likes16 downloads17 reach18 impact
1563 instances - 38 features - 2 classes - 0 missing values
This is a PROMISE data set made publicly available in order to encourage repeatable, verifiable, refutable, and/or improvable predictive models of software engineering. If you publish material based…
19146 runs0 likes18 downloads18 reach19 impact
10885 instances - 22 features - 2 classes - 25 missing values
One of the NASA Metrics Data Program defect data sets. The specific type of software is unknown. Data comes from McCabe and Halstead features extractors of source code. These features were defined in…
815 runs0 likes14 downloads14 reach9 impact
9466 instances - 39 features - 2 classes - 0 missing values
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% This is a PROMISE Software Engineering Repository data set made publicly available in order to encourage repeatable,…
756 runs0 likes8 downloads8 reach6 impact
121 instances - 30 features - 2 classes - 0 missing values
No data.
718 runs0 likes5 downloads5 reach6 impact
63 instances - 30 features - 2 classes - 0 missing values
No data.
794 runs1 likes13 downloads14 reach6 impact
107 instances - 30 features - 2 classes - 0 missing values
One of the NASA Metrics Data Program defect data sets. Data from software for science data processing. Data comes from McCabe and Halstead features extractors of source code. These features were…
174611 runs0 likes21 downloads21 reach18 impact
522 instances - 22 features - 2 classes - 0 missing values
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% This is a PROMISE Software Engineering Repository data set made publicly available in order to encourage repeatable,…
789 runs0 likes8 downloads8 reach6 impact
101 instances - 30 features - 2 classes - 0 missing values
One of the NASA Metrics Data Program defect data sets. The specific type of software is unknown. Data comes from McCabe and Halstead features extractors of source code. These features were defined in…
772 runs0 likes10 downloads10 reach7 impact
161 instances - 40 features - 2 classes - 0 missing values
No data.
697 runs0 likes5 downloads5 reach6 impact
89 instances - 9 features - 2 classes - 0 missing values
One of the NASA Metrics Data Program defect data sets. Data from flight software for earth orbiting satellite. Data comes from McCabe and Halstead features extractors of source code. These features…
113516 runs0 likes15 downloads15 reach18 impact
1458 instances - 38 features - 2 classes - 0 missing values
One of the NASA Metrics Data Program defect data sets. Data from software for storage management for receiving and processing ground data. Data comes from McCabe and Halstead features extractors of…
159483 runs2 likes22 downloads24 reach19 impact
2109 instances - 22 features - 2 classes - 0 missing values
No data.
726 runs0 likes9 downloads9 reach6 impact
36 instances - 30 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
575 runs0 likes9 downloads9 reach7 impact
1000 instances - 11 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
746 runs0 likes13 downloads13 reach7 impact
1024 instances - 3 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
739 runs0 likes7 downloads7 reach7 impact
500 instances - 101 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
118 runs0 likes3 downloads3 reach7 impact
195 instances - 12 features - 2 classes - 2 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
670 runs0 likes4 downloads4 reach6 impact
62 instances - 8 features - 2 classes - 8 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
602 runs0 likes12 downloads12 reach7 impact
13750 instances - 41 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
753 runs0 likes10 downloads10 reach7 impact
8192 instances - 13 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
748 runs0 likes6 downloads6 reach7 impact
250 instances - 51 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
856 runs0 likes11 downloads11 reach7 impact
209 instances - 7 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
1188 runs0 likes8 downloads8 reach6 impact
111 instances - 4 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
745 runs0 likes10 downloads10 reach7 impact
3107 instances - 7 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
739 runs0 likes10 downloads10 reach7 impact
4052 instances - 8 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
701 runs0 likes6 downloads6 reach6 impact
44 instances - 4 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
854 runs0 likes7 downloads7 reach7 impact
250 instances - 6 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
705 runs0 likes6 downloads6 reach6 impact
96 instances - 5 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
1111 runs0 likes9 downloads9 reach6 impact
100 instances - 6 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
567 runs0 likes13 downloads13 reach7 impact
40768 instances - 11 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
594 runs0 likes8 downloads8 reach7 impact
1000 instances - 6 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
822 runs0 likes7 downloads7 reach7 impact
250 instances - 6 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
686 runs0 likes5 downloads5 reach7 impact
782 instances - 9 features - 2 classes - 466 missing values