OpenML
Filter results by:
Binarized version of the original data set (see version 1). The multi-class target feature is converted to a two-class nominal target feature by re-labeling the majority class as positive ('P') and…
173 runs0 likes6 downloads6 reach16 impact
106 instances - 59 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). The multi-class target feature is converted to a two-class nominal target feature by re-labeling the majority class as positive ('P') and…
721 runs0 likes5 downloads5 reach8 impact
412 instances - 9 features - 2 classes - 96 missing values
Binarized version of the original data set (see version 1). The multi-class target feature is converted to a two-class nominal target feature by re-labeling the majority class as positive ('P') and…
698 runs0 likes5 downloads5 reach7 impact
36 instances - 23 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). The multi-class target feature is converted to a two-class nominal target feature by re-labeling the majority class as positive ('P') and…
176 runs0 likes7 downloads7 reach7 impact
101 instances - 18 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). The multi-class target feature is converted to a two-class nominal target feature by re-labeling the majority class as positive ('P') and…
717 runs0 likes5 downloads5 reach7 impact
90 instances - 9 features - 2 classes - 3 missing values
Binarized version of the original data set (see version 1). The multi-class target feature is converted to a two-class nominal target feature by re-labeling the majority class as positive ('P') and…
722 runs0 likes5 downloads5 reach8 impact
285 instances - 8 features - 2 classes - 27 missing values
Binarized version of the original data set (see version 1). The multi-class target feature is converted to a two-class nominal target feature by re-labeling the majority class as positive ('P') and…
801 runs0 likes8 downloads8 reach8 impact
841 instances - 71 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). The multi-class target feature is converted to a two-class nominal target feature by re-labeling the majority class as positive ('P') and…
758 runs0 likes10 downloads10 reach8 impact
2000 instances - 77 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). The multi-class target feature is converted to a two-class nominal target feature by re-labeling the majority class as positive ('P') and…
1139 runs0 likes7 downloads7 reach7 impact
132 instances - 5 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). The multi-class target feature is converted to a two-class nominal target feature by re-labeling the majority class as positive ('P') and…
727 runs0 likes5 downloads5 reach8 impact
205 instances - 26 features - 2 classes - 59 missing values
Binarized version of the original data set (see version 1). The multi-class target feature is converted to a two-class nominal target feature by re-labeling the majority class as positive ('P') and…
707 runs0 likes5 downloads5 reach7 impact
52 instances - 25 features - 2 classes - 7 missing values
Binarized version of the original data set (see version 1). The multi-class target feature is converted to a two-class nominal target feature by re-labeling the majority class as positive ('P') and…
780 runs0 likes8 downloads8 reach8 impact
178 instances - 14 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). The multi-class target feature is converted to a two-class nominal target feature by re-labeling the majority class as positive ('P') and…
717 runs0 likes5 downloads5 reach8 impact
303 instances - 14 features - 2 classes - 7 missing values
Binarized version of the original data set (see version 1). The multi-class target feature is converted to a two-class nominal target feature by re-labeling the majority class as positive ('P') and…
736 runs0 likes7 downloads7 reach8 impact
1473 instances - 10 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). The multi-class target feature is converted to a two-class nominal target feature by re-labeling the majority class as positive ('P') and…
773 runs0 likes8 downloads8 reach8 impact
2000 instances - 7 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). The multi-class target feature is converted to a two-class nominal target feature by re-labeling the majority class as positive ('P') and…
688 runs0 likes4 downloads4 reach7 impact
294 instances - 14 features - 2 classes - 782 missing values
Binarized version of the original data set (see version 1). The multi-class target feature is converted to a two-class nominal target feature by re-labeling the majority class as positive ('P') and…
708 runs0 likes5 downloads5 reach8 impact
365 instances - 4 features - 2 classes - 30 missing values
Binarized version of the original data set (see version 1). The multi-class target feature is converted to a two-class nominal target feature by re-labeling the majority class as positive ('P') and…
1133 runs0 likes15 downloads15 reach11 impact
150 instances - 5 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). The multi-class target feature is converted to a two-class nominal target feature by re-labeling the majority class as positive ('P') and…
857 runs0 likes12 downloads12 reach10 impact
9961 instances - 15 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). The multi-class target feature is converted to a two-class nominal target feature by re-labeling the majority class as positive ('P') and…
639 runs0 likes12 downloads12 reach8 impact
20000 instances - 17 features - 2 classes - 0 missing values
Dataset from the Agnostic Learning vs. Prior Knowledge Challenge (http://www.agnostic.inf.ethz.ch), which consisted of 5 different datasets (SYLVA, GINA, NOVA, HIVA, ADA). The purpose of the challenge…
68261 runs0 likes20 downloads20 reach19 impact
3468 instances - 971 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). The multi-class target feature is converted to a two-class nominal target feature by re-labeling the majority class as positive ('P') and…
772 runs0 likes14 downloads14 reach8 impact
2310 instances - 20 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). The multi-class target feature is converted to a two-class nominal target feature by re-labeling the majority class as positive ('P') and…
652 runs0 likes15 downloads15 reach8 impact
12960 instances - 9 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
812 runs0 likes7 downloads7 reach8 impact
559 instances - 5 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
769 runs0 likes7 downloads7 reach8 impact
559 instances - 5 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
779 runs0 likes8 downloads8 reach8 impact
559 instances - 5 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
115 runs0 likes5 downloads5 reach7 impact
40 instances - 3 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
772 runs0 likes7 downloads7 reach8 impact
500 instances - 51 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
617 runs0 likes11 downloads11 reach8 impact
1000 instances - 26 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
817 runs0 likes7 downloads7 reach8 impact
250 instances - 51 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
813 runs0 likes7 downloads7 reach8 impact
662 instances - 4 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
810 runs0 likes6 downloads6 reach7 impact
100 instances - 51 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
653 runs0 likes10 downloads10 reach8 impact
1000 instances - 11 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
154 runs0 likes9 downloads9 reach8 impact
2001 instances - 3 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
842 runs0 likes9 downloads9 reach8 impact
323 instances - 5 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
775 runs0 likes6 downloads6 reach8 impact
500 instances - 26 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
791 runs0 likes6 downloads6 reach8 impact
250 instances - 11 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
797 runs0 likes7 downloads7 reach8 impact
500 instances - 11 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
807 runs0 likes7 downloads7 reach8 impact
500 instances - 51 features - 2 classes - 0 missing values
Datasets from the Agnostic Learning vs. Prior Knowledge Challenge (http://www.agnostic.inf.ethz.ch) Dataset from: http://www.agnostic.inf.ethz.ch/datasets.php Modified by TunedIT (converted to ARFF…
486 runs0 likes14 downloads14 reach9 impact
14395 instances - 109 features - 2 classes - 0 missing values
One of the NASA Metrics Data Program defect data sets. The specific type of software is unknown. Data comes from McCabe and Halstead features extractors of source code. These features were defined in…
777 runs0 likes9 downloads9 reach8 impact
458 instances - 40 features - 2 classes - 0 missing values
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% This is a PROMISE Software Engineering Repository data set made publicly available in order to encourage repeatable,…
765 runs0 likes7 downloads7 reach7 impact
145 instances - 95 features - 2 classes - 0 missing values
One of the NASA Metrics Data Program defect data sets. Data from flight software for earth orbiting satellite. Data comes from McCabe and Halstead features extractors of source code. These features…
144599 runs1 likes16 downloads17 reach19 impact
1563 instances - 38 features - 2 classes - 0 missing values
This is a PROMISE data set made publicly available in order to encourage repeatable, verifiable, refutable, and/or improvable predictive models of software engineering. If you publish material based…
19474 runs0 likes18 downloads18 reach20 impact
10885 instances - 22 features - 2 classes - 25 missing values
This database encodes the complete set of possible board configurations at the end of tic-tac-toe games, where "x" is assumed to have played first. The target concept is "win for x" (i.e., true when…
385613 runs1 likes66 downloads67 reach2 impact
958 instances - 10 features - 2 classes - 0 missing values
Publication Request: >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> This file describes the contents of the heart-disease directory. This directory contains 4 databases…
1789 runs0 likes10 downloads10 reach2 impact
294 instances - 14 features - 2 classes - 782 missing values
Attribute information: ``` sick, negative. | classes age: continuous. sex: M, F. on thyroxine: f, t. query on thyroxine: f, t. on antithyroid medication: f, t. sick: f, t. pregnant: f, t. thyroid…
19175 runs0 likes31 downloads31 reach2 impact
3772 instances - 30 features - 2 classes - 6064 missing values
NAME: Sonar, Mines vs. Rocks SUMMARY: This is the data set used by Gorman and Sejnowski in their study of the classification of sonar signals using a neural network [1]. The task is to train a network…
2366 runs1 likes25 downloads26 reach2 impact
208 instances - 61 features - 2 classes - 0 missing values
1. Title: Haberman's Survival Data 2. Sources: (a) Donor: Tjen-Sien Lim (limt@stat.wisc.edu) (b) Date: March 4, 1999 3. Past Usage: 1. Haberman, S. J. (1976). Generalized Residuals for Log-Linear…
3241 runs1 likes19 downloads20 reach2 impact
306 instances - 4 features - 2 classes - 0 missing values
SPAM E-mail Database The "spam" concept is diverse: advertisements for products/websites, make money fast schemes, chain letters, pornography... Our collection of spam e-mails came from our postmaster…
158901 runs3 likes83 downloads86 reach4 impact
4601 instances - 58 features - 2 classes - 0 missing values
Publication Request: >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> This file describes the contents of the heart-disease directory. This directory contains 4 databases…
1763 runs0 likes10 downloads10 reach2 impact
303 instances - 14 features - 2 classes - 7 missing values
1. Title: Hepatitis Domain 2. Sources: (a) unknown (b) Donor: G.Gong (Carnegie-Mellon University) via Bojan Cestnik Jozef Stefan Institute Jamova 39 61000 Ljubljana Yugoslavia (tel.: (38)(+61) 214-399…
2134 runs1 likes12 downloads13 reach2 impact
155 instances - 20 features - 2 classes - 167 missing values
1. Title: 1984 United States Congressional Voting Records Database 2. Source Information: (a) Source: Congressional Quarterly Almanac, 98th Congress, 2nd session 1984, Volume XL: Congressional…
2262 runs0 likes17 downloads17 reach2 impact
435 instances - 17 features - 2 classes - 392 missing values
Compilation of promoters with known transcriptional start points for E. coli genes. The task is to recognize promoters in strings that represent nucleotides (one of A, G, T, or C). A promoter is a…
138 runs1 likes9 downloads10 reach4 impact
106 instances - 59 features - 2 classes - 0 missing values
Prediction task is to determine whether a person makes over 50K a year. Extraction was done by Barry Becker from the 1994 Census database. A set of reasonably clean records was extracted using the…
2671 runs1 likes31 downloads32 reach4 impact
48842 instances - 15 features - 2 classes - 6465 missing values
1. Title: INDUCE Trains Data set 2. Sources: - Donor: GMU, Center for AI, Software Librarian, Eric E. Bloedorn (bloedorn@aic.gmu.edu) - Original owners: Ryszard S. Michalski (michalski@aic.gmu.edu)…
1973 runs0 likes9 downloads9 reach7 impact
10 instances - 33 features - 2 classes - 51 missing values
This database contains 13 attributes (which have been extracted from a larger set of 75) Attribute Information: ------------------------ -- 1. age -- 2. sex -- 3. chest pain type (4 values) -- 4.…
3214 runs0 likes18 downloads18 reach4 impact
270 instances - 14 features - 2 classes - 0 missing values
This radar data was collected by a system in Goose Bay, Labrador. This system consists of a phased array of 16 high-frequency antennas with a total transmitted power on the order of 6.4 kilowatts. See…
2484 runs3 likes27 downloads30 reach4 impact
351 instances - 35 features - 2 classes - 0 missing values
No data.
1457 runs0 likes12 downloads12 reach2 impact
39366 instances - 10 features - 2 classes - 0 missing values
The dataset (originally named ELEC2) contains 45,312 instances dated from 7 May 1996 to 5 December 1998. Each example of the dataset refers to a period of 30 minutes, i.e. there are 48 instances for…
106352 runs3 likes32 downloads35 reach4 impact
45312 instances - 9 features - 2 classes - 0 missing values
1. Title: Space Shuttle Autolanding Domain 2. Sources: (a) Original source: unknown -- NASA: Mr. Roger Burke's autolander design team (b) Donor: Bojan Cestnik Jozef Stefan Institute Jamova 39 61000…
1466 runs0 likes9 downloads9 reach2 impact
15 instances - 7 features - 2 classes - 26 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
965 runs0 likes9 downloads9 reach7 impact
137 instances - 8 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
747 runs0 likes12 downloads12 reach8 impact
4177 instances - 9 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
604 runs0 likes9 downloads9 reach8 impact
1000 instances - 26 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
771 runs0 likes9 downloads9 reach8 impact
468 instances - 4 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
747 runs0 likes6 downloads6 reach8 impact
200 instances - 11 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
624 runs0 likes10 downloads10 reach8 impact
15000 instances - 49 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
856 runs0 likes11 downloads11 reach8 impact
209 instances - 7 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
602 runs0 likes12 downloads12 reach8 impact
13750 instances - 41 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
707 runs0 likes6 downloads6 reach7 impact
96 instances - 5 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
748 runs0 likes6 downloads6 reach8 impact
250 instances - 51 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
753 runs0 likes10 downloads10 reach8 impact
8192 instances - 13 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
1190 runs0 likes9 downloads9 reach7 impact
111 instances - 4 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
567 runs0 likes13 downloads13 reach8 impact
40768 instances - 11 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
739 runs0 likes10 downloads10 reach8 impact
4052 instances - 8 features - 2 classes - 0 missing values
Fast training of support vector machines using sequential minimal optimization. In Bernhard Schölkopf, Christopher J. C. Burges, and Alexander J. Smola, editors, Advances in Kernel Methods - Support…
564 runs0 likes11 downloads11 reach16 impact
36974 instances - 124 features - 2 classes - 0 missing values
Vehicle classification in distributed sensor networks. Journal of Parallel and Distributed Computing, 64(7):826-838, July 2004. This is the SensIT Vehicle (combined) dataset, retrieved 2013-11-14 from…
403 runs0 likes22 downloads22 reach9 impact
98528 instances - 101 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
773 runs0 likes6 downloads6 reach8 impact
500 instances - 11 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
720 runs0 likes8 downloads8 reach8 impact
506 instances - 21 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
763 runs0 likes8 downloads8 reach8 impact
250 instances - 101 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
709 runs0 likes9 downloads9 reach7 impact
48 instances - 5 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
723 runs0 likes5 downloads5 reach7 impact
34 instances - 9 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
614 runs0 likes9 downloads9 reach8 impact
1000 instances - 51 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
734 runs0 likes7 downloads7 reach7 impact
100 instances - 101 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
1119 runs0 likes8 downloads8 reach7 impact
100 instances - 6 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
782 runs0 likes6 downloads6 reach8 impact
250 instances - 11 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
705 runs0 likes5 downloads5 reach8 impact
398 instances - 8 features - 2 classes - 6 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
726 runs0 likes10 downloads10 reach8 impact
576 instances - 12 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
739 runs0 likes6 downloads6 reach8 impact
662 instances - 4 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
759 runs0 likes6 downloads6 reach8 impact
250 instances - 26 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
744 runs0 likes11 downloads11 reach8 impact
8192 instances - 33 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
784 runs0 likes7 downloads7 reach8 impact
500 instances - 51 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
621 runs0 likes8 downloads8 reach8 impact
1000 instances - 51 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
120 runs0 likes5 downloads5 reach7 impact
50 instances - 8 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
789 runs0 likes8 downloads8 reach7 impact
73 instances - 6 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
780 runs0 likes7 downloads7 reach7 impact
66 instances - 6 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
775 runs0 likes6 downloads6 reach8 impact
250 instances - 51 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
818 runs0 likes7 downloads7 reach8 impact
284 instances - 11 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
554 runs0 likes9 downloads9 reach8 impact
40768 instances - 11 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
728 runs0 likes6 downloads6 reach7 impact
61 instances - 3 features - 2 classes - 0 missing values