OpenML
Leo Breiman (2001). Random Forests. Machine Learning. 45(1):5-32.
0 runs0 likes0 downloads0 reach0 impact
Ross Quinlan (1993). C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers, San Mateo, CA.
0 runs0 likes0 downloads0 reach0 impact
J. Friedman, T. Hastie, R. Tibshirani (1998). Additive Logistic Regression: a Statistical View of Boosting. Stanford University.
0 runs0 likes0 downloads0 reach0 impact
Niels Landwehr, Mark Hall, Eibe Frank (2005). Logistic Model Trees. Machine Learning. 95(1-2):161-205. Marc Sumner, Eibe Frank, Mark Hall: Speeding up Logistic Model Tree Induction. In: 9th European…
0 runs0 likes0 downloads0 reach0 impact
Leo Breiman (1996). Bagging predictors. Machine Learning. 24(2):123-140.
0 runs0 likes0 downloads0 reach0 impact
Imputation transformer for completing missing values.
0 runs0 likes0 downloads0 reach0 impact
A decision tree classifier.
2 runs0 likes0 downloads0 reach0 impact
Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit…
20 runs0 likes1 downloads1 reach0 impact
This flow is generated by the automl benchmark: https://github.com/openml/automlbenchmark.git Repository commit: 75567510ce887b7b8aa857b9a1f9f29d1775813c constantpredictor version: stable
4 runs0 likes0 downloads0 reach0 impact
A random forest classifier. A random forest is a meta estimator that fits a number of decision tree classifiers on various sub-samples of the dataset and uses averaging to improve the predictive…
4 runs0 likes0 downloads0 reach0 impact
Learner mlr.classif.randomForest from package(s) randomForest.
0 runs0 likes1 downloads1 reach0 impact
Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit…
0 runs0 likes0 downloads0 reach0 impact
Imputation transformer for completing missing values.
0 runs0 likes0 downloads0 reach0 impact
A decision tree classifier.
0 runs0 likes0 downloads0 reach0 impact
Implementation of the scikit-learn classifier API for Keras. Below are a list of SciKeras specific parameters. For details on other parameters, please see the see the `tf.keras.Model documentation…
0 runs0 likes0 downloads0 reach0 impact
This flow is generated by the automl benchmark: https://github.com/openml/automlbenchmark.git Repository commit: f0086d1bd6488395413bfe1f6caf8f9a34b8910d constantpredictor version: stable
3 runs0 likes0 downloads0 reach0 impact
Feature selector that removes all low-variance features. This feature selection algorithm looks only at the features (X), not the desired outputs (y), and can thus be used for unsupervised learning.
0 runs0 likes0 downloads0 reach0 impact
C-Support Vector Classification. The implementation is based on libsvm. The fit time complexity is more than quadratic with the number of samples which makes it hard to scale to dataset with more than…
0 runs0 likes0 downloads0 reach0 impact
Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit…
0 runs0 likes0 downloads0 reach0 impact
Imputation transformer for completing missing values.
0 runs0 likes0 downloads0 reach0 impact
Encode categorical integer features using a one-hot aka one-of-K scheme. The input to this transformer should be a matrix of integers, denoting the values taken on by categorical (discrete) features.…
0 runs0 likes0 downloads0 reach0 impact
Standardize features by removing the mean and scaling to unit variance Centering and scaling happen independently on each feature by computing the relevant statistics on the samples in the training…
0 runs0 likes0 downloads0 reach0 impact
Automatically created tensorflow flow.
1 runs0 likes0 downloads0 reach0 impact
Automatically created tensorflow flow.
1 runs0 likes0 downloads0 reach0 impact
Automatically created tensorflow flow.
1 runs0 likes0 downloads0 reach0 impact
Automatically created tensorflow flow.
0 runs0 likes0 downloads0 reach0 impact
Automatically created tensorflow flow.
0 runs0 likes0 downloads0 reach0 impact
Automatically created tensorflow flow.
0 runs0 likes0 downloads0 reach0 impact
Imputation transformer for completing missing values.
0 runs0 likes0 downloads0 reach0 impact
Applies transformers to columns of an array or pandas DataFrame. This estimator allows different columns or column subsets of the input to be transformed separately and the features generated by each…
0 runs0 likes0 downloads0 reach0 impact
Encode categorical features as a one-hot numeric array. The input to this transformer should be an array-like of integers or strings, denoting the values taken on by categorical (discrete) features.…
0 runs0 likes0 downloads0 reach0 impact
Standardize features by removing the mean and scaling to unit variance The standard score of a sample `x` is calculated as: z = (x - u) / s where `u` is the mean of the training samples or zero if…
0 runs0 likes0 downloads0 reach0 impact
Feature selector that removes all low-variance features. This feature selection algorithm looks only at the features (X), not the desired outputs (y), and can thus be used for unsupervised learning.
0 runs0 likes0 downloads0 reach0 impact
C-Support Vector Classification. The implementation is based on libsvm. The fit time scales at least quadratically with the number of samples and may be impractical beyond tens of thousands of…
0 runs0 likes0 downloads0 reach0 impact
Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit…
1 runs0 likes0 downloads0 reach0 impact
A decision tree classifier.
0 runs0 likes0 downloads0 reach0 impact
Imputation transformer for completing missing values.
0 runs0 likes0 downloads0 reach0 impact
Imputation transformer for completing missing values.
0 runs0 likes0 downloads0 reach0 impact
Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit…
1 runs0 likes0 downloads0 reach0 impact
Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit…
0 runs0 likes0 downloads0 reach0 impact
A random forest classifier. A random forest is a meta estimator that fits a number of decision tree classifiers on various sub-samples of the dataset and uses averaging to improve the predictive…
0 runs0 likes0 downloads0 reach0 impact
Logistic Regression (aka logit, MaxEnt) classifier. In the multiclass case, the training algorithm uses the one-vs-rest (OvR) scheme if the 'multi_class' option is set to 'ovr', and uses the…
0 runs0 likes0 downloads0 reach0 impact
An extremely randomized tree regressor. Extra-trees differ from classic decision trees in the way they are built. When looking for the best split to separate the samples of a node into two groups,…
1 runs0 likes0 downloads0 reach0 impact
Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit…
0 runs0 likes0 downloads0 reach0 impact
Randomized search on hyper parameters. RandomizedSearchCV implements a "fit" and a "score" method. It also implements "predict", "predict_proba", "decision_function", "transform" and…
0 runs0 likes0 downloads0 reach0 impact
A random forest classifier. A random forest is a meta estimator that fits a number of decision tree classifiers on various sub-samples of the dataset and uses averaging to improve the predictive…
0 runs0 likes0 downloads0 reach0 impact
Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit…
0 runs0 likes0 downloads0 reach0 impact
Apply a power transform featurewise to make data more Gaussian-like. Power transforms are a family of parametric, monotonic transformations that are applied to make data more Gaussian-like. This is…
0 runs0 likes0 downloads0 reach0 impact
Scale features using statistics that are robust to outliers. This Scaler removes the median and scales the data according to the quantile range (defaults to IQR: Interquartile Range). The IQR is the…
0 runs0 likes0 downloads0 reach0 impact
Transform features by scaling each feature to a given range. This estimator scales and translates each feature individually such that it is in the given range on the training set, e.g. between zero…
0 runs0 likes0 downloads0 reach0 impact
A random forest regressor. A random forest is a meta estimator that fits a number of classifying decision trees on various sub-samples of the dataset and uses averaging to improve the predictive…
5 runs0 likes0 downloads0 reach0 impact
Regression based on k-nearest neighbors. The target is predicted by local interpolation of the targets associated of the nearest neighbors in the training set.
6 runs0 likes0 downloads0 reach0 impact
Epsilon-Support Vector Regression. The free parameters in the model are C and epsilon. The implementation is based on libsvm. The fit time complexity is more than quadratic with the number of samples…
5 runs0 likes0 downloads0 reach0 impact
A decision tree regressor.
7 runs0 likes0 downloads0 reach0 impact
Ordinary least squares Linear Regression. LinearRegression fits a linear model with coefficients w = (w1, ..., wp) to minimize the residual sum of squares between the observed targets in the dataset,…
9 runs0 likes0 downloads0 reach0 impact
Imputation transformer for completing missing values.
0 runs0 likes0 downloads0 reach0 impact
Applies transformers to columns of an array or pandas DataFrame. This estimator allows different columns or column subsets of the input to be transformed separately and the features generated by each…
0 runs0 likes0 downloads0 reach0 impact
Encode categorical features as a one-hot numeric array. The input to this transformer should be an array-like of integers or strings, denoting the values taken on by categorical (discrete) features.…
0 runs0 likes0 downloads0 reach0 impact
Feature selector that removes all low-variance features. This feature selection algorithm looks only at the features (X), not the desired outputs (y), and can thus be used for unsupervised learning.
0 runs0 likes0 downloads0 reach0 impact
An AdaBoost classifier. An AdaBoost [1] classifier is a meta-estimator that begins by fitting a classifier on the original dataset and then fits additional copies of the classifier on the same dataset…
0 runs0 likes0 downloads0 reach0 impact
A decision tree classifier.
0 runs0 likes0 downloads0 reach0 impact
A decision tree classifier.
0 runs0 likes0 downloads0 reach0 impact
Automatically created keras flow.
1 runs0 likes0 downloads0 reach0 impact
Automatically created keras flow.
1 runs0 likes0 downloads0 reach0 impact
A decision tree classifier.
5 runs0 likes0 downloads0 reach0 impact
A decision tree classifier.
0 runs0 likes0 downloads0 reach0 impact
A decision tree classifier.
0 runs0 likes0 downloads0 reach0 impact
Automatically created keras flow.
2 runs0 likes0 downloads0 reach0 impact
Automatically created keras flow.
0 runs0 likes0 downloads0 reach0 impact
Automatically created keras flow.
0 runs0 likes0 downloads0 reach0 impact
Automatically created keras flow.
0 runs0 likes0 downloads0 reach0 impact
Automatically created keras flow.
11 runs0 likes0 downloads0 reach0 impact
Automatically created keras flow.
1 runs0 likes0 downloads0 reach0 impact
Imputation transformer for completing missing values.
0 runs0 likes0 downloads0 reach0 impact
Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit…
11 runs0 likes0 downloads0 reach0 impact
Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit…
0 runs0 likes0 downloads0 reach0 impact
Encode categorical features as a one-hot numeric array. The input to this transformer should be an array-like of integers or strings, denoting the values taken on by categorical (discrete) features.…
0 runs0 likes0 downloads0 reach0 impact
A decision tree classifier.
2 runs0 likes0 downloads0 reach2 impact
Classifier implementing the k-nearest neighbors vote.
1 runs0 likes1 downloads1 reach0 impact
Automatically created keras flow.
0 runs0 likes0 downloads0 reach0 impact
Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit…
0 runs0 likes0 downloads0 reach0 impact
Implementation of the scikit-learn API for XGBoost classification.
0 runs0 likes0 downloads0 reach0 impact
Standardize features by removing the mean and scaling to unit variance The standard score of a sample `x` is calculated as: z = (x - u) / s where `u` is the mean of the training samples or zero if…
0 runs0 likes0 downloads0 reach0 impact
C-Support Vector Classification. The implementation is based on libsvm. The fit time scales at least quadratically with the number of samples and may be impractical beyond tens of thousands of…
0 runs0 likes0 downloads0 reach0 impact
Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit…
3 runs0 likes0 downloads0 reach0 impact
Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit…
0 runs0 likes0 downloads0 reach0 impact
Standardize features by removing the mean and scaling to unit variance Centering and scaling happen independently on each feature by computing the relevant statistics on the samples in the training…
0 runs0 likes0 downloads0 reach0 impact
C-Support Vector Classification. The implementation is based on libsvm. The fit time complexity is more than quadratic with the number of samples which makes it hard to scale to dataset with more than…
0 runs0 likes0 downloads0 reach0 impact
Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit…
0 runs0 likes0 downloads0 reach0 impact
Imputation transformer for completing missing values.
0 runs0 likes0 downloads0 reach0 impact
A decision tree classifier.
0 runs0 likes0 downloads0 reach0 impact
This flow is generated by the automl benchmark: https://github.com/openml/automlbenchmark Precise benchmark version information could not be determined. constantpredictor version: stable
0 runs0 likes0 downloads0 reach0 impact
C-Support Vector Classification. The implementation is based on libsvm. The fit time scales at least quadratically with the number of samples and may be impractical beyond tens of thousands of…
0 runs0 likes0 downloads0 reach0 impact
Automatically created keras flow.
2 runs0 likes0 downloads0 reach0 impact
Automatically created keras flow.
0 runs0 likes0 downloads0 reach0 impact
Automatically created keras flow.
3 runs0 likes0 downloads0 reach0 impact
Automatically created keras flow.
6 runs0 likes0 downloads0 reach0 impact