OpenML
Supervised Classification on primary-tumor

Supervised Classification on primary-tumor

Task 2065 Supervised Classification primary-tumor 543 runs submitted
0 likes downloaded by 0 people , 0 total downloads 0 issues
Visibility: Public
  • study_1 study_107 study_41 under100k under1m
Issue #Downvotes for this reason By


Metric:

543 Runs

Fetching data
Fetching data
Search runs in more detail
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.7455, f_measure: 0.3351, kappa: 0.3079, kb_relative_information_score: 104.5717, mean_absolute_error: 0.0661, mean_prior_absolute_error: 0.0812, number_of_instances: 339, precision: 0.3076, predictive_accuracy: 0.41, prior_entropy: 3.7542, recall: 0.41, relative_absolute_error: 0.8133, root_mean_prior_squared_error: 0.2011, root_mean_squared_error: 0.1861, root_relative_squared_error: 0.9257, scimark_benchmark: 943.5518,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.7141, f_measure: 0.3873, kappa: 0.3403, kb_relative_information_score: 113.0508, mean_absolute_error: 0.061, mean_prior_absolute_error: 0.0812, number_of_instances: 339, precision: 0.3661, predictive_accuracy: 0.4248, prior_entropy: 3.7542, recall: 0.4248, relative_absolute_error: 0.7511, root_mean_prior_squared_error: 0.2011, root_mean_squared_error: 0.1958, root_relative_squared_error: 0.9737, scimark_benchmark: 918.9845,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.8189, f_measure: 0.4216, kappa: 0.395, kb_relative_information_score: 119.7096, mean_absolute_error: 0.0617, mean_prior_absolute_error: 0.0812, number_of_instances: 339, precision: 0.3948, predictive_accuracy: 0.472, prior_entropy: 3.7542, recall: 0.472, relative_absolute_error: 0.7601, root_mean_prior_squared_error: 0.2011, root_mean_squared_error: 0.1761, root_relative_squared_error: 0.8758, scimark_benchmark: 946.7423,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.7866, f_measure: 0.4236, kappa: 0.3592, kb_relative_information_score: 26.751, mean_absolute_error: 0.0838, mean_prior_absolute_error: 0.0812, number_of_instances: 339, precision: 0.4271, predictive_accuracy: 0.4307, prior_entropy: 3.7542, recall: 0.4307, relative_absolute_error: 1.0313, root_mean_prior_squared_error: 0.2011, root_mean_squared_error: 0.2027, root_relative_squared_error: 1.0078, scimark_benchmark: 947.0578,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.7165, f_measure: 0.3361, kappa: 0.3005, kb_relative_information_score: 93.7416, mean_absolute_error: 0.0683, mean_prior_absolute_error: 0.0812, number_of_instances: 339, precision: 0.3102, predictive_accuracy: 0.3982, prior_entropy: 3.7542, recall: 0.3982, relative_absolute_error: 0.8405, root_mean_prior_squared_error: 0.2011, root_mean_squared_error: 0.1908, root_relative_squared_error: 0.9489, scimark_benchmark: 929.8487,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.7172, f_measure: 0.3864, kappa: 0.348, kb_relative_information_score: 113.4721, mean_absolute_error: 0.0613, mean_prior_absolute_error: 0.0812, number_of_instances: 339, precision: 0.3625, predictive_accuracy: 0.4336, prior_entropy: 3.7542, recall: 0.4336, relative_absolute_error: 0.7542, root_mean_prior_squared_error: 0.2011, root_mean_squared_error: 0.1945, root_relative_squared_error: 0.967, scimark_benchmark: 924.8762,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.6152, f_measure: 0.2951, kappa: 0.2074, kb_relative_information_score: 14.1328, mean_absolute_error: 0.0841, mean_prior_absolute_error: 0.0812, number_of_instances: 339, precision: 0.3572, predictive_accuracy: 0.3599, prior_entropy: 3.7542, recall: 0.3599, relative_absolute_error: 1.0353, root_mean_prior_squared_error: 0.2011, root_mean_squared_error: 0.2036, root_relative_squared_error: 1.0125, scimark_benchmark: 941.7943,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.474, f_measure: 0.0984, kb_relative_information_score: 7.9216, mean_absolute_error: 0.0844, mean_prior_absolute_error: 0.0812, number_of_instances: 339, precision: 0.0614, predictive_accuracy: 0.2478, prior_entropy: 3.7542, recall: 0.2478, relative_absolute_error: 1.0389, root_mean_prior_squared_error: 0.2011, root_mean_squared_error: 0.2043, root_relative_squared_error: 1.016, scimark_benchmark: 946.702,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.5307, f_measure: 0.1412, kappa: 0.07, kb_relative_information_score: 54.0317, mean_absolute_error: 0.066, mean_prior_absolute_error: 0.0812, number_of_instances: 339, precision: 0.1063, predictive_accuracy: 0.2743, prior_entropy: 3.7542, recall: 0.2743, relative_absolute_error: 0.8123, root_mean_prior_squared_error: 0.2011, root_mean_squared_error: 0.2568, root_relative_squared_error: 1.2773, scimark_benchmark: 904.9062,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.7221, f_measure: 0.3864, kappa: 0.348, kb_relative_information_score: 15.7165, mean_absolute_error: 0.0853, mean_prior_absolute_error: 0.0812, number_of_instances: 339, precision: 0.3625, predictive_accuracy: 0.4336, prior_entropy: 3.7542, recall: 0.4336, relative_absolute_error: 1.0503, root_mean_prior_squared_error: 0.2011, root_mean_squared_error: 0.2049, root_relative_squared_error: 1.0189, scimark_benchmark: 945.2177,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.7747, f_measure: 0.3793, kappa: 0.338, kb_relative_information_score: 99.8524, mean_absolute_error: 0.0664, mean_prior_absolute_error: 0.0812, number_of_instances: 339, precision: 0.361, predictive_accuracy: 0.4366, prior_entropy: 3.7542, recall: 0.4366, relative_absolute_error: 0.8173, root_mean_prior_squared_error: 0.2011, root_mean_squared_error: 0.1828, root_relative_squared_error: 0.9089, scimark_benchmark: 936.9156,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.5332, f_measure: 0.1661, kappa: 0.0732, kb_relative_information_score: 53.097, mean_absolute_error: 0.066, mean_prior_absolute_error: 0.0812, number_of_instances: 339, precision: 0.1436, predictive_accuracy: 0.2743, prior_entropy: 3.7542, recall: 0.2743, relative_absolute_error: 0.8123, root_mean_prior_squared_error: 0.2011, root_mean_squared_error: 0.2568, root_relative_squared_error: 1.2773,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.5307, f_measure: 0.1412, kappa: 0.07, kb_relative_information_score: 54.0317, mean_absolute_error: 0.066, mean_prior_absolute_error: 0.0812, number_of_instances: 339, precision: 0.1063, predictive_accuracy: 0.2743, prior_entropy: 3.7542, recall: 0.2743, relative_absolute_error: 0.8123, root_mean_prior_squared_error: 0.2011, root_mean_squared_error: 0.2568, root_relative_squared_error: 1.2773, scimark_benchmark: 905.2354,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.7994, f_measure: 0.3247, kappa: 0.2877, kb_relative_information_score: 71.6715, mean_absolute_error: 0.0728, mean_prior_absolute_error: 0.0812, number_of_instances: 339, precision: 0.3335, predictive_accuracy: 0.3923, prior_entropy: 3.7542, recall: 0.3923, relative_absolute_error: 0.896, root_mean_prior_squared_error: 0.2011, root_mean_squared_error: 0.189, root_relative_squared_error: 0.9401,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.794, f_measure: 0.4187, kappa: 0.3671, kb_relative_information_score: 110.7755, mean_absolute_error: 0.0635, mean_prior_absolute_error: 0.0812, number_of_instances: 339, precision: 0.4052, predictive_accuracy: 0.4454, prior_entropy: 3.7542, recall: 0.4454, relative_absolute_error: 0.7824, root_mean_prior_squared_error: 0.2011, root_mean_squared_error: 0.184, root_relative_squared_error: 0.9149, scimark_benchmark: 934.2128,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.7665, f_measure: 0.371, kappa: 0.3065, kb_relative_information_score: 87.7307, mean_absolute_error: 0.0675, mean_prior_absolute_error: 0.0812, number_of_instances: 339, precision: 0.3651, predictive_accuracy: 0.3894, prior_entropy: 3.7542, recall: 0.3894, relative_absolute_error: 0.8307, root_mean_prior_squared_error: 0.2011, root_mean_squared_error: 0.1909, root_relative_squared_error: 0.9493, scimark_benchmark: 942.868,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.7165, f_measure: 0.3361, kappa: 0.3005, kb_relative_information_score: 93.7416, mean_absolute_error: 0.0683, mean_prior_absolute_error: 0.0812, number_of_instances: 339, precision: 0.3102, predictive_accuracy: 0.3982, prior_entropy: 3.7542, recall: 0.3982, relative_absolute_error: 0.8405, root_mean_prior_squared_error: 0.2011, root_mean_squared_error: 0.1908, root_relative_squared_error: 0.9489, scimark_benchmark: 946.3254,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.7893, f_measure: 0.4044, kappa: 0.3733, kb_relative_information_score: 26.3004, mean_absolute_error: 0.0836, mean_prior_absolute_error: 0.0812, number_of_instances: 339, precision: 0.3691, predictive_accuracy: 0.4631, prior_entropy: 3.7542, recall: 0.4631, relative_absolute_error: 1.029, root_mean_prior_squared_error: 0.2011, root_mean_squared_error: 0.2023, root_relative_squared_error: 1.0061, scimark_benchmark: 947.163,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.6951, f_measure: 0.3299, kappa: 0.2545, kb_relative_information_score: 18.4306, mean_absolute_error: 0.0839, mean_prior_absolute_error: 0.0812, number_of_instances: 339, precision: 0.3679, predictive_accuracy: 0.3864, prior_entropy: 3.7542, recall: 0.3864, relative_absolute_error: 1.033, root_mean_prior_squared_error: 0.2011, root_mean_squared_error: 0.2031, root_relative_squared_error: 1.0101, scimark_benchmark: 947.314,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.7898, f_measure: 0.3884, kappa: 0.3483, kb_relative_information_score: 117.3925, mean_absolute_error: 0.0612, mean_prior_absolute_error: 0.0812, number_of_instances: 339, precision: 0.36, predictive_accuracy: 0.4277, prior_entropy: 3.7542, recall: 0.4277, relative_absolute_error: 0.7532, root_mean_prior_squared_error: 0.2011, root_mean_squared_error: 0.1816, root_relative_squared_error: 0.903, scimark_benchmark: 948.9466,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.7757, f_measure: 0.3349, kappa: 0.2862, kb_relative_information_score: 101.3919, mean_absolute_error: 0.066, mean_prior_absolute_error: 0.0812, number_of_instances: 339, precision: 0.3075, predictive_accuracy: 0.3805, prior_entropy: 3.7542, recall: 0.3805, relative_absolute_error: 0.8131, root_mean_prior_squared_error: 0.2011, root_mean_squared_error: 0.1859, root_relative_squared_error: 0.9246, scimark_benchmark: 941.4639,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.837, f_measure: 0.4312, kappa: 0.3837, kb_relative_information_score: 133.8184, mean_absolute_error: 0.0559, mean_prior_absolute_error: 0.0812, number_of_instances: 339, precision: 0.4151, predictive_accuracy: 0.4543, prior_entropy: 3.7542, recall: 0.4543, relative_absolute_error: 0.6887, root_mean_prior_squared_error: 0.2011, root_mean_squared_error: 0.1793, root_relative_squared_error: 0.8916, scimark_benchmark: 943.089,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.7221, f_measure: 0.3864, kappa: 0.348, kb_relative_information_score: 15.7165, mean_absolute_error: 0.0853, mean_prior_absolute_error: 0.0812, number_of_instances: 339, precision: 0.3625, predictive_accuracy: 0.4336, prior_entropy: 3.7542, recall: 0.4336, relative_absolute_error: 1.0503, root_mean_prior_squared_error: 0.2011, root_mean_squared_error: 0.2049, root_relative_squared_error: 1.0189, scimark_benchmark: 943.4416,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.6371, f_measure: 0.1864, kappa: 0.152, kb_relative_information_score: 55.41, mean_absolute_error: 0.0746, mean_prior_absolute_error: 0.0812, number_of_instances: 339, precision: 0.151, predictive_accuracy: 0.2891, prior_entropy: 3.7542, recall: 0.2891, relative_absolute_error: 0.9182, root_mean_prior_squared_error: 0.2011, root_mean_squared_error: 0.1935, root_relative_squared_error: 0.9624, scimark_benchmark: 934.7364,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.7968, f_measure: 0.3851, kappa: 0.3559, kb_relative_information_score: 111.265, mean_absolute_error: 0.0655, mean_prior_absolute_error: 0.0812, number_of_instances: 339, precision: 0.3624, predictive_accuracy: 0.4454, prior_entropy: 3.7542, recall: 0.4454, relative_absolute_error: 0.8072, root_mean_prior_squared_error: 0.2011, root_mean_squared_error: 0.1804, root_relative_squared_error: 0.8973, scimark_benchmark: 576.6402,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.8193, f_measure: 0.4339, kappa: 0.3845, kb_relative_information_score: 128.0274, mean_absolute_error: 0.058, mean_prior_absolute_error: 0.0812, number_of_instances: 339, precision: 0.4212, predictive_accuracy: 0.4572, prior_entropy: 3.7542, recall: 0.4572, relative_absolute_error: 0.7147, root_mean_prior_squared_error: 0.2011, root_mean_squared_error: 0.1808, root_relative_squared_error: 0.8991, scimark_benchmark: 575.2168,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.7104, f_measure: 0.3546, kappa: 0.28, kb_relative_information_score: 15.2236, mean_absolute_error: 0.0853, mean_prior_absolute_error: 0.0812, number_of_instances: 339, precision: 0.3502, predictive_accuracy: 0.3658, prior_entropy: 3.7542, recall: 0.3658, relative_absolute_error: 1.0505, root_mean_prior_squared_error: 0.2011, root_mean_squared_error: 0.2049, root_relative_squared_error: 1.0192, scimark_benchmark: 946.6539,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.4874, f_measure: 0.0984, kb_relative_information_score: 8.1463, mean_absolute_error: 0.0844, mean_prior_absolute_error: 0.0812, number_of_instances: 339, precision: 0.0614, predictive_accuracy: 0.2478, prior_entropy: 3.7542, recall: 0.2478, relative_absolute_error: 1.0388, root_mean_prior_squared_error: 0.2011, root_mean_squared_error: 0.2043, root_relative_squared_error: 1.0159, scimark_benchmark: 934.5204,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.7582, f_measure: 0.4664, kappa: 0.4408, kb_relative_information_score: 70.7118, mean_absolute_error: 0.0714, mean_prior_absolute_error: 0.0812, number_of_instances: 339, precision: 0.4457, predictive_accuracy: 0.5074, prior_entropy: 3.7542, recall: 0.5074, relative_absolute_error: 0.8797, root_mean_prior_squared_error: 0.2011, root_mean_squared_error: 0.192, root_relative_squared_error: 0.9549, scimark_benchmark: 934.2957,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.8373, f_measure: 0.4534, kappa: 0.4213, kb_relative_information_score: 139.7803, mean_absolute_error: 0.0549, mean_prior_absolute_error: 0.0812, number_of_instances: 339, precision: 0.4337, predictive_accuracy: 0.4926, prior_entropy: 3.7542, recall: 0.4926, relative_absolute_error: 0.6763, root_mean_prior_squared_error: 0.2011, root_mean_squared_error: 0.1745, root_relative_squared_error: 0.8679,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.7302, f_measure: 0.3801, kappa: 0.3118, kb_relative_information_score: 88.4638, mean_absolute_error: 0.0656, mean_prior_absolute_error: 0.0812, number_of_instances: 339, precision: 0.3752, predictive_accuracy: 0.3923, prior_entropy: 3.7542, recall: 0.3923, relative_absolute_error: 0.8077, root_mean_prior_squared_error: 0.2011, root_mean_squared_error: 0.1938, root_relative_squared_error: 0.9637, scimark_benchmark: 939.5945,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.7824, f_measure: 0.4141, kappa: 0.3616, kb_relative_information_score: 112.53, mean_absolute_error: 0.0578, mean_prior_absolute_error: 0.0812, number_of_instances: 339, precision: 0.3982, predictive_accuracy: 0.4366, prior_entropy: 3.7542, recall: 0.4366, relative_absolute_error: 0.7119, root_mean_prior_squared_error: 0.2011, root_mean_squared_error: 0.1912, root_relative_squared_error: 0.9508, scimark_benchmark: 940.6371,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.6371, f_measure: 0.1864, kappa: 0.152, kb_relative_information_score: 55.41, mean_absolute_error: 0.0746, mean_prior_absolute_error: 0.0812, number_of_instances: 339, precision: 0.151, predictive_accuracy: 0.2891, prior_entropy: 3.7542, recall: 0.2891, relative_absolute_error: 0.9182, root_mean_prior_squared_error: 0.2011, root_mean_squared_error: 0.1935, root_relative_squared_error: 0.9624, scimark_benchmark: 938.725,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.7228, f_measure: 0.3474, kappa: 0.2884, kb_relative_information_score: 107.3764, mean_absolute_error: 0.0626, mean_prior_absolute_error: 0.0812, number_of_instances: 339, precision: 0.3248, predictive_accuracy: 0.3864, prior_entropy: 3.7542, recall: 0.3864, relative_absolute_error: 0.7703, root_mean_prior_squared_error: 0.2011, root_mean_squared_error: 0.1967, root_relative_squared_error: 0.9784, scimark_benchmark: 939.3132,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.7994, f_measure: 0.3247, kappa: 0.2877, kb_relative_information_score: 71.6715, mean_absolute_error: 0.0728, mean_prior_absolute_error: 0.0812, number_of_instances: 339, precision: 0.3335, predictive_accuracy: 0.3923, prior_entropy: 3.7542, recall: 0.3923, relative_absolute_error: 0.896, root_mean_prior_squared_error: 0.2011, root_mean_squared_error: 0.189, root_relative_squared_error: 0.9401, scimark_benchmark: 944.8216,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.5332, f_measure: 0.1661, kappa: 0.0732, kb_relative_information_score: 53.097, mean_absolute_error: 0.066, mean_prior_absolute_error: 0.0812, number_of_instances: 339, precision: 0.1436, predictive_accuracy: 0.2743, prior_entropy: 3.7542, recall: 0.2743, relative_absolute_error: 0.8123, root_mean_prior_squared_error: 0.2011, root_mean_squared_error: 0.2568, root_relative_squared_error: 1.2773, scimark_benchmark: 935.1179,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.7873, f_measure: 0.4142, kappa: 0.3524, kb_relative_information_score: 120.5809, mean_absolute_error: 0.0578, mean_prior_absolute_error: 0.0812, number_of_instances: 339, precision: 0.4075, predictive_accuracy: 0.4248, prior_entropy: 3.7542, recall: 0.4248, relative_absolute_error: 0.7119, root_mean_prior_squared_error: 0.2011, root_mean_squared_error: 0.1962, root_relative_squared_error: 0.9756, scimark_benchmark: 945.8041,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.7221, f_measure: 0.3864, kappa: 0.348, kb_relative_information_score: 15.7165, mean_absolute_error: 0.0853, mean_prior_absolute_error: 0.0812, number_of_instances: 339, precision: 0.3625, predictive_accuracy: 0.4336, prior_entropy: 3.7542, recall: 0.4336, relative_absolute_error: 1.0503, root_mean_prior_squared_error: 0.2011, root_mean_squared_error: 0.2049, root_relative_squared_error: 1.0189, scimark_benchmark: 942.9175,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.8217, f_measure: 0.4336, kappa: 0.3956, kb_relative_information_score: 126.4268, mean_absolute_error: 0.0595, mean_prior_absolute_error: 0.0812, number_of_instances: 339, precision: 0.4123, predictive_accuracy: 0.472, prior_entropy: 3.7542, recall: 0.472, relative_absolute_error: 0.7323, root_mean_prior_squared_error: 0.2011, root_mean_squared_error: 0.1775, root_relative_squared_error: 0.8825, scimark_benchmark: 909.7336,

Metric:

Timeline

Plotting contribution timeline

Leaderboard

Rank Name Top Score Entries Highest rank

Note: The leaderboard ignores resubmissions of previous solutions, as well as parameter variations that do not improve performance.

Challenge

In supervised classification, you are given an input dataset in which instances are labeled with a certain class. The goal is to build a model that predicts the class for future unlabeled instances. The model is evaluated using a train-test procedure, e.g. cross-validation.

To make results by different users comparable, you are given the exact train-test folds to be used, and you need to return at least the predictions generated by your model for each of the test instances. OpenML will use these predictions to calculate a range of evaluation measures on the server.

You can also upload your own evaluation measures, provided that the code for doing so is available from the implementation used. For extremely large datasets, it may be infeasible to upload all predictions. In those cases, you need to compute and provide the evaluations yourself.

Optionally, you can upload the model trained on all the input data. There is no restriction on the file format, but please use a well-known format or PMML.

Given inputs

Expected outputs

evaluations A list of user-defined evaluations of the task as key-value pairs. KeyValue (optional)
model A file containing the model built on all the input data. File (optional)
predictions The desired output format Predictions (optional)

How to submit runs

Using your favorite machine learning environment

Download this task directly in your environment and automatically upload your results

OpenML bootcamp

From your own software

Use one of our APIs to download data from OpenML and upload your results

OpenML APIs