OpenML
Supervised Classification on ipums_la_99-small

Supervised Classification on ipums_la_99-small

Task 4218 Supervised Classification ipums_la_99-small 130 runs submitted
0 likes downloaded by 0 people , 0 total downloads 0 issues
Visibility: Public
Issue #Downvotes for this reason By


Metric:

130 Runs

Fetching data
Fetching data
Search runs in more detail
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9495, f_measure: 0.7027, kappa: 0.5472, kb_relative_information_score: 46671.757, mean_absolute_error: 0.078, mean_prior_absolute_error: 0.1558, number_of_instances: 88440, precision: 0.6863, predictive_accuracy: 0.758, prior_entropy: 1.7594, recall: 0.758, relative_absolute_error: 0.5007, root_mean_prior_squared_error: 0.2791, root_mean_squared_error: 0.1975, root_relative_squared_error: 0.7078, scimark_benchmark: 825.5282, usercpu_time_millis: 20, usercpu_time_millis_testing: 10, usercpu_time_millis_training: 10,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9528, f_measure: 0.52, kappa: 0.0001, kb_relative_information_score: 12316.2204, mean_absolute_error: 0.1414, mean_prior_absolute_error: 0.1558, number_of_instances: 88440, precision: 0.5324, predictive_accuracy: 0.6562, prior_entropy: 1.7594, recall: 0.6562, relative_absolute_error: 0.9077, root_mean_prior_squared_error: 0.2791, root_mean_squared_error: 0.2567, root_relative_squared_error: 0.92, scimark_benchmark: 880.8372, usercpu_time_millis: 26390, usercpu_time_millis_testing: 110, usercpu_time_millis_training: 26280,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.5768, f_measure: 0.5124, kappa: 0.0032, kb_relative_information_score: 4457.4633, mean_absolute_error: 0.1484, mean_prior_absolute_error: 0.1558, number_of_instances: 88440, precision: 0.4599, predictive_accuracy: 0.6025, prior_entropy: 1.7594, recall: 0.6025, relative_absolute_error: 0.9527, root_mean_prior_squared_error: 0.2791, root_mean_squared_error: 0.292, root_relative_squared_error: 1.0462, scimark_benchmark: 924.3698, usercpu_time_millis: 143250, usercpu_time_millis_testing: 170, usercpu_time_millis_training: 143080,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.5728, f_measure: 0.5119, kappa: 0.0044, kb_relative_information_score: 4355.4082, mean_absolute_error: 0.1484, mean_prior_absolute_error: 0.1558, number_of_instances: 88440, precision: 0.46, predictive_accuracy: 0.5991, prior_entropy: 1.7594, recall: 0.5991, relative_absolute_error: 0.9522, root_mean_prior_squared_error: 0.2791, root_mean_squared_error: 0.2935, root_relative_squared_error: 1.0518, scimark_benchmark: 940.0008, usercpu_time_millis: 31980, usercpu_time_millis_testing: 30, usercpu_time_millis_training: 31950,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.973, f_measure: 0.7497, kappa: 0.6225, kb_relative_information_score: 56976.5433, mean_absolute_error: 0.066, mean_prior_absolute_error: 0.1558, number_of_instances: 88440, precision: 0.78, predictive_accuracy: 0.7957, prior_entropy: 1.7594, recall: 0.7957, relative_absolute_error: 0.4238, root_mean_prior_squared_error: 0.2791, root_mean_squared_error: 0.1821, root_relative_squared_error: 0.6526, scimark_benchmark: 1318.1432, usercpu_time_millis: 590, usercpu_time_millis_training: 590,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9496, f_measure: 0.7027, kappa: 0.5472, kb_relative_information_score: 1528.5471, mean_absolute_error: 0.1813, mean_prior_absolute_error: 0.1558, number_of_instances: 88440, precision: 0.6863, predictive_accuracy: 0.758, prior_entropy: 1.7594, recall: 0.758, relative_absolute_error: 1.1632, root_mean_prior_squared_error: 0.2791, root_mean_squared_error: 0.2681, root_relative_squared_error: 0.9608, scimark_benchmark: 1297.6356, usercpu_time_millis: 130, usercpu_time_millis_testing: 10, usercpu_time_millis_training: 120,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9496, f_measure: 0.7027, kappa: 0.5472, kb_relative_information_score: 1528.5471, mean_absolute_error: 0.1813, mean_prior_absolute_error: 0.1558, number_of_instances: 88440, precision: 0.6863, predictive_accuracy: 0.758, prior_entropy: 1.7594, recall: 0.758, relative_absolute_error: 1.1632, root_mean_prior_squared_error: 0.2791, root_mean_squared_error: 0.2681, root_relative_squared_error: 0.9608, scimark_benchmark: 1372.2145, usercpu_time_millis: 110, usercpu_time_millis_testing: 10, usercpu_time_millis_training: 100,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9814, f_measure: 0.8109, kappa: 0.6598, kb_relative_information_score: 59103.9998, mean_absolute_error: 0.0625, mean_prior_absolute_error: 0.1558, number_of_instances: 88440, precision: 0.8131, predictive_accuracy: 0.8146, prior_entropy: 1.7594, recall: 0.8146, relative_absolute_error: 0.4011, root_mean_prior_squared_error: 0.2791, root_mean_squared_error: 0.1771, root_relative_squared_error: 0.6346, scimark_benchmark: 1280.6952, usercpu_time_millis: 1252720, usercpu_time_millis_testing: 10460, usercpu_time_millis_training: 1242260,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9496, f_measure: 0.7027, kappa: 0.5472, kb_relative_information_score: 1528.5471, mean_absolute_error: 0.1813, mean_prior_absolute_error: 0.1558, number_of_instances: 88440, precision: 0.6863, predictive_accuracy: 0.758, prior_entropy: 1.7594, recall: 0.758, relative_absolute_error: 1.1632, root_mean_prior_squared_error: 0.2791, root_mean_squared_error: 0.2681, root_relative_squared_error: 0.9608, scimark_benchmark: 933.3136, usercpu_time_millis: 140, usercpu_time_millis_testing: 20, usercpu_time_millis_training: 120,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9496, f_measure: 0.7027, kappa: 0.5472, kb_relative_information_score: 1528.5471, mean_absolute_error: 0.1813, mean_prior_absolute_error: 0.1558, number_of_instances: 88440, precision: 0.6863, predictive_accuracy: 0.758, prior_entropy: 1.7594, recall: 0.758, relative_absolute_error: 1.1632, root_mean_prior_squared_error: 0.2791, root_mean_squared_error: 0.2681, root_relative_squared_error: 0.9608, scimark_benchmark: 889.3151, usercpu_time_millis: 150, usercpu_time_millis_testing: 20, usercpu_time_millis_training: 130,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9496, f_measure: 0.7027, kappa: 0.5472, kb_relative_information_score: 1528.5471, mean_absolute_error: 0.1813, mean_prior_absolute_error: 0.1558, number_of_instances: 88440, precision: 0.6863, predictive_accuracy: 0.758, prior_entropy: 1.7594, recall: 0.758, relative_absolute_error: 1.1632, root_mean_prior_squared_error: 0.2791, root_mean_squared_error: 0.2681, root_relative_squared_error: 0.9608, scimark_benchmark: 1324.8395, usercpu_time_millis: 120, usercpu_time_millis_testing: 10, usercpu_time_millis_training: 110,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9595, f_measure: 0.7728, kappa: 0.5907, kb_relative_information_score: 51510.8144, mean_absolute_error: 0.0755, mean_prior_absolute_error: 0.1558, number_of_instances: 88440, precision: 0.7694, predictive_accuracy: 0.7794, prior_entropy: 1.7594, recall: 0.7794, relative_absolute_error: 0.4844, root_mean_prior_squared_error: 0.2791, root_mean_squared_error: 0.1988, root_relative_squared_error: 0.7125, scimark_benchmark: 1313.9994, usercpu_time_millis: 45430, usercpu_time_millis_testing: 45430,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9768, f_measure: 0.807, kappa: 0.6573, kb_relative_information_score: 56856.7804, mean_absolute_error: 0.0627, mean_prior_absolute_error: 0.1558, number_of_instances: 88440, precision: 0.8117, predictive_accuracy: 0.8134, prior_entropy: 1.7594, recall: 0.8134, relative_absolute_error: 0.4026, root_mean_prior_squared_error: 0.2791, root_mean_squared_error: 0.1834, root_relative_squared_error: 0.6571, scimark_benchmark: 1321.9426, usercpu_time_millis: 2079790, usercpu_time_millis_testing: 40, usercpu_time_millis_training: 2079750,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9472, f_measure: 0.7631, kappa: 0.5724, kb_relative_information_score: 50466.8248, mean_absolute_error: 0.0744, mean_prior_absolute_error: 0.1558, number_of_instances: 88440, precision: 0.76, predictive_accuracy: 0.7701, prior_entropy: 1.7594, recall: 0.7701, relative_absolute_error: 0.4777, root_mean_prior_squared_error: 0.2791, root_mean_squared_error: 0.2063, root_relative_squared_error: 0.7394, scimark_benchmark: 916.6405, usercpu_time_millis: 58400, usercpu_time_millis_testing: 58400,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9479, f_measure: 0.8049, kappa: 0.6432, kb_relative_information_score: -2842.4764, mean_absolute_error: 0.2086, mean_prior_absolute_error: 0.1558, number_of_instances: 88440, precision: 0.8043, predictive_accuracy: 0.8056, prior_entropy: 1.7594, recall: 0.8056, relative_absolute_error: 1.3388, root_mean_prior_squared_error: 0.2791, root_mean_squared_error: 0.3081, root_relative_squared_error: 1.1039, scimark_benchmark: 880.8372, usercpu_time_millis: 667180, usercpu_time_millis_testing: 22530, usercpu_time_millis_training: 644650,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.8928, f_measure: 0.8007, kappa: 0.6352, kb_relative_information_score: 47161.8545, mean_absolute_error: 0.0568, mean_prior_absolute_error: 0.1558, number_of_instances: 88440, precision: 0.8001, predictive_accuracy: 0.8013, prior_entropy: 1.7594, recall: 0.8013, relative_absolute_error: 0.3643, root_mean_prior_squared_error: 0.2791, root_mean_squared_error: 0.2382, root_relative_squared_error: 0.8537, scimark_benchmark: 908.2231, usercpu_time_millis: 6000, usercpu_time_millis_testing: 980, usercpu_time_millis_training: 5020,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9581, f_measure: 0.5667, kappa: 0.1253, kb_relative_information_score: 29092.1074, mean_absolute_error: 0.1151, mean_prior_absolute_error: 0.1558, number_of_instances: 88440, precision: 0.5613, predictive_accuracy: 0.675, prior_entropy: 1.7594, recall: 0.675, relative_absolute_error: 0.7387, root_mean_prior_squared_error: 0.2791, root_mean_squared_error: 0.2277, root_relative_squared_error: 0.8161, scimark_benchmark: 1330.0694, usercpu_time_millis: 13700, usercpu_time_millis_testing: 960, usercpu_time_millis_training: 12740,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.7798, f_measure: 0.606, kappa: 0.2528, kb_relative_information_score: 22314.6011, mean_absolute_error: 0.1132, mean_prior_absolute_error: 0.1558, number_of_instances: 88440, precision: 0.5749, predictive_accuracy: 0.6547, prior_entropy: 1.7594, recall: 0.6547, relative_absolute_error: 0.7264, root_mean_prior_squared_error: 0.2791, root_mean_squared_error: 0.2805, root_relative_squared_error: 1.0051, scimark_benchmark: 1073.494, usercpu_time_millis: 530, usercpu_time_millis_testing: 40, usercpu_time_millis_training: 490,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.4994, f_measure: 0.5199, kb_relative_information_score: 27.9416, mean_absolute_error: 0.1558, mean_prior_absolute_error: 0.1558, number_of_instances: 88440, precision: 0.4305, predictive_accuracy: 0.6562, prior_entropy: 1.7594, recall: 0.6562, relative_absolute_error: 0.9995, root_mean_prior_squared_error: 0.2791, root_mean_squared_error: 0.2791, root_relative_squared_error: 1, scimark_benchmark: 1313.5726, usercpu_time_millis: 3930, usercpu_time_millis_testing: 10, usercpu_time_millis_training: 3920,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.7831, f_measure: 0.7008, kappa: 0.4567, kb_relative_information_score: 32434.4843, mean_absolute_error: 0.0779, mean_prior_absolute_error: 0.1558, number_of_instances: 88440, precision: 0.6803, predictive_accuracy: 0.7273, prior_entropy: 1.7594, recall: 0.7273, relative_absolute_error: 0.5, root_mean_prior_squared_error: 0.2791, root_mean_squared_error: 0.2791, root_relative_squared_error: 1.0002, scimark_benchmark: 1339.7143, usercpu_time_millis: 78490, usercpu_time_millis_testing: 5130, usercpu_time_millis_training: 73360,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9602, f_measure: 0.7824, kappa: 0.6238, kb_relative_information_score: 55948.5905, mean_absolute_error: 0.0648, mean_prior_absolute_error: 0.1558, number_of_instances: 88440, precision: 0.7915, predictive_accuracy: 0.795, prior_entropy: 1.7594, recall: 0.795, relative_absolute_error: 0.416, root_mean_prior_squared_error: 0.2791, root_mean_squared_error: 0.1911, root_relative_squared_error: 0.6848, scimark_benchmark: 1418.5826, usercpu_time_millis: 4160, usercpu_time_millis_testing: 50, usercpu_time_millis_training: 4110,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.5454, f_measure: 0.549, kappa: 0.0937, kb_relative_information_score: 18468.2771, mean_absolute_error: 0.1005, mean_prior_absolute_error: 0.1558, number_of_instances: 88440, precision: 0.5021, predictive_accuracy: 0.6484, prior_entropy: 1.7594, recall: 0.6484, relative_absolute_error: 0.6447, root_mean_prior_squared_error: 0.2791, root_mean_squared_error: 0.317, root_relative_squared_error: 1.1358, scimark_benchmark: 1351.788, usercpu_time_millis: 20, usercpu_time_millis_testing: 10, usercpu_time_millis_training: 10,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.8793, f_measure: 0.7861, kappa: 0.6072, kb_relative_information_score: 44866.4504, mean_absolute_error: 0.061, mean_prior_absolute_error: 0.1558, number_of_instances: 88440, precision: 0.7891, predictive_accuracy: 0.7866, prior_entropy: 1.7594, recall: 0.7866, relative_absolute_error: 0.3913, root_mean_prior_squared_error: 0.2791, root_mean_squared_error: 0.2469, root_relative_squared_error: 0.8849, scimark_benchmark: 1336.9753, usercpu_time_millis: 21430, usercpu_time_millis_testing: 10, usercpu_time_millis_training: 21420,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.4994, f_measure: 0.5199, kb_relative_information_score: 0.2053, mean_absolute_error: 0.1558, mean_prior_absolute_error: 0.1558, number_of_instances: 88440, precision: 0.4305, predictive_accuracy: 0.6562, prior_entropy: 1.7594, recall: 0.6562, relative_absolute_error: 1, root_mean_prior_squared_error: 0.2791, root_mean_squared_error: 0.2791, root_relative_squared_error: 1, scimark_benchmark: 1418.5826, usercpu_time_millis: 10, usercpu_time_millis_testing: 10,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9753, f_measure: 0.8072, kappa: 0.6542, kb_relative_information_score: 59015.7608, mean_absolute_error: 0.0621, mean_prior_absolute_error: 0.1558, number_of_instances: 88440, precision: 0.8121, predictive_accuracy: 0.8116, prior_entropy: 1.7594, recall: 0.8116, relative_absolute_error: 0.3983, root_mean_prior_squared_error: 0.2791, root_mean_squared_error: 0.1794, root_relative_squared_error: 0.643, scimark_benchmark: 1367.4715, usercpu_time_millis: 130, usercpu_time_millis_training: 130,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9799, build_cpu_time: 2046.7202, build_memory: 2072085230.0479, f_measure: 0.7505, kappa: 0.5548, kb_relative_information_score: 49639.0688, mean_absolute_error: 0.0828, mean_prior_absolute_error: 0.1558, number_of_instances: 88440, precision: 0.7367, predictive_accuracy: 0.786, prior_entropy: 1.7594, recall: 0.786, relative_absolute_error: 0.5312, root_mean_prior_squared_error: 0.2791, root_mean_squared_error: 0.1913, root_relative_squared_error: 0.6857, scimark_benchmark: 949.0699,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9803, build_cpu_time: 4038.4918, build_memory: 2783066786.9899, f_measure: 0.7506, kappa: 0.5552, kb_relative_information_score: 49735.4611, mean_absolute_error: 0.0828, mean_prior_absolute_error: 0.1558, number_of_instances: 88440, precision: 0.7373, predictive_accuracy: 0.7861, prior_entropy: 1.7594, recall: 0.7861, relative_absolute_error: 0.5311, root_mean_prior_squared_error: 0.2791, root_mean_squared_error: 0.1911, root_relative_squared_error: 0.6847, scimark_benchmark: 943.09,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9755, build_cpu_time: 18.7007, build_memory: 2405856443.6902, f_measure: 0.7935, kappa: 0.6381, kb_relative_information_score: 56484.7093, mean_absolute_error: 0.0638, mean_prior_absolute_error: 0.1558, number_of_instances: 88440, precision: 0.7989, predictive_accuracy: 0.8033, prior_entropy: 1.7594, recall: 0.8033, relative_absolute_error: 0.4094, root_mean_prior_squared_error: 0.2791, root_mean_squared_error: 0.1854, root_relative_squared_error: 0.6643, scimark_benchmark: 923.1137,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9749, build_cpu_time: 8.497, build_memory: 3379585605.5662, f_measure: 0.7938, kappa: 0.6383, kb_relative_information_score: 56461.4664, mean_absolute_error: 0.0638, mean_prior_absolute_error: 0.1558, number_of_instances: 88440, precision: 0.7991, predictive_accuracy: 0.8034, prior_entropy: 1.7594, recall: 0.8034, relative_absolute_error: 0.4094, root_mean_prior_squared_error: 0.2791, root_mean_squared_error: 0.1855, root_relative_squared_error: 0.6648, scimark_benchmark: 938.9086,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9741, f_measure: 0.792, kappa: 0.6352, kb_relative_information_score: 56366.427, mean_absolute_error: 0.0638, mean_prior_absolute_error: 0.1558, number_of_instances: 88440, precision: 0.797, predictive_accuracy: 0.8017, prior_entropy: 1.7594, recall: 0.8017, relative_absolute_error: 0.4096, root_mean_prior_squared_error: 0.2791, root_mean_squared_error: 0.1859, root_relative_squared_error: 0.6663,

Metric:

Timeline

Plotting contribution timeline

Leaderboard

Rank Name Top Score Entries Highest rank

Note: The leaderboard ignores resubmissions of previous solutions, as well as parameter variations that do not improve performance.

Challenge

In supervised classification, you are given an input dataset in which instances are labeled with a certain class. The goal is to build a model that predicts the class for future unlabeled instances. The model is evaluated using a train-test procedure, e.g. cross-validation.

To make results by different users comparable, you are given the exact train-test folds to be used, and you need to return at least the predictions generated by your model for each of the test instances. OpenML will use these predictions to calculate a range of evaluation measures on the server.

You can also upload your own evaluation measures, provided that the code for doing so is available from the implementation used. For extremely large datasets, it may be infeasible to upload all predictions. In those cases, you need to compute and provide the evaluations yourself.

Optionally, you can upload the model trained on all the input data. There is no restriction on the file format, but please use a well-known format or PMML.

Given inputs

Expected outputs

How to submit runs

Using your favorite machine learning environment

Download this task directly in your environment and automatically upload your results

OpenML bootcamp

From your own software

Use one of our APIs to download data from OpenML and upload your results

OpenML APIs