Run
10154802

Run 10154802

Task 9 (Supervised Classification) autos Uploaded 13-02-2019 by Hugo Spee
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • auto-jupyter-notebook openml-python Sklearn_0.20.1.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(imputer=sklearn.impute.SimpleImputer,estimator=sc ripts.machineLearningAlgorithms.WithoutOutliersClassifier(classifier=sklear n.tree.tree.DecisionTreeClassifier,outlierCLF=sklearn.ensemble.iforest.Isol ationForest))(1)Automatically created scikit-learn flow.
sklearn.tree.tree.DecisionTreeClassifier(32)_class_weightnull
sklearn.tree.tree.DecisionTreeClassifier(32)_criterion"gini"
sklearn.tree.tree.DecisionTreeClassifier(32)_max_depthnull
sklearn.tree.tree.DecisionTreeClassifier(32)_max_featuresnull
sklearn.tree.tree.DecisionTreeClassifier(32)_max_leaf_nodesnull
sklearn.tree.tree.DecisionTreeClassifier(32)_min_impurity_decrease0.0
sklearn.tree.tree.DecisionTreeClassifier(32)_min_impurity_splitnull
sklearn.tree.tree.DecisionTreeClassifier(32)_min_samples_leaf1
sklearn.tree.tree.DecisionTreeClassifier(32)_min_samples_split2
sklearn.tree.tree.DecisionTreeClassifier(32)_min_weight_fraction_leaf0.0
sklearn.tree.tree.DecisionTreeClassifier(32)_presortfalse
sklearn.tree.tree.DecisionTreeClassifier(32)_random_state1234
sklearn.tree.tree.DecisionTreeClassifier(32)_splitter"best"
sklearn.impute.SimpleImputer(5)_copytrue
sklearn.impute.SimpleImputer(5)_fill_valuenull
sklearn.impute.SimpleImputer(5)_missing_valuesNaN
sklearn.impute.SimpleImputer(5)_strategy"mean"
sklearn.impute.SimpleImputer(5)_verbose0
sklearn.pipeline.Pipeline(imputer=sklearn.impute.SimpleImputer,estimator=scripts.machineLearningAlgorithms.WithoutOutliersClassifier(classifier=sklearn.tree.tree.DecisionTreeClassifier,outlierCLF=sklearn.ensemble.iforest.IsolationForest))(1)_memorynull
sklearn.ensemble.iforest.IsolationForest(1)_behaviour"new"
sklearn.ensemble.iforest.IsolationForest(1)_bootstrapfalse
sklearn.ensemble.iforest.IsolationForest(1)_contamination"auto"
sklearn.ensemble.iforest.IsolationForest(1)_max_features1.0
sklearn.ensemble.iforest.IsolationForest(1)_max_samples"auto"
sklearn.ensemble.iforest.IsolationForest(1)_n_estimators100
sklearn.ensemble.iforest.IsolationForest(1)_n_jobsnull
sklearn.ensemble.iforest.IsolationForest(1)_random_state4815
sklearn.ensemble.iforest.IsolationForest(1)_verbose0

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

17 Evaluation measures

0.8491 ± 0.0522
Per class
Cross-validation details (10-fold Crossvalidation)
0.7664 ± 0.0798
Per class
Cross-validation details (10-fold Crossvalidation)
0.6967 ± 0.104
Cross-validation details (10-fold Crossvalidation)
144.7376 ± 1.7453
Cross-validation details (10-fold Crossvalidation)
0.0669 ± 0.0234
Cross-validation details (10-fold Crossvalidation)
0.2209 ± 0.0011
Cross-validation details (10-fold Crossvalidation)
205
Per class
Cross-validation details (10-fold Crossvalidation)
0.7697 ± 0.0699
Per class
Cross-validation details (10-fold Crossvalidation)
0.7659 ± 0.0819
Cross-validation details (10-fold Crossvalidation)
2.3268
Cross-validation details (10-fold Crossvalidation)
0.7659 ± 0.0819
Per class
Cross-validation details (10-fold Crossvalidation)
0.3028 ± 0.1063
Cross-validation details (10-fold Crossvalidation)
0.3318 ± 0.0017
Cross-validation details (10-fold Crossvalidation)
0.2586 ± 0.047
Cross-validation details (10-fold Crossvalidation)
0.7796 ± 0.1426
Cross-validation details (10-fold Crossvalidation)