Run
10228392

Run 10228392

Task 59 (Supervised Classification) iris Uploaded 04-06-2019 by Felix Neutatz
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.C376922b9343792(n19=sklearn.pipeline.C376922b9342794(n20=s klearn.pipeline.C58a8378eb9937(n21=sklearn.compose._column_transformer.C376 922b933f458(n22=sklearn.preprocessing._function_transformer.C376922b933ed17 )),n23=sklearn.pipeline.C376922b9341b3a(n24=sklearn.compose._column_transfo rmer.C8dd9f27df5f8(n25=sklearn.preprocessing._function_transformer.C376922b 93410c0))),n26=fastsklearnfeature.transformations.IdentityTransformation.C5 8a8378eb9ebf,c=sklearn.linear_model.logistic.LogisticRegression)(1)Automatically created scikit-learn flow.
sklearn.linear_model.logistic.LogisticRegression(23)_C0.1
sklearn.linear_model.logistic.LogisticRegression(23)_class_weight"balanced"
sklearn.linear_model.logistic.LogisticRegression(23)_dualfalse
sklearn.linear_model.logistic.LogisticRegression(23)_fit_intercepttrue
sklearn.linear_model.logistic.LogisticRegression(23)_intercept_scaling1
sklearn.linear_model.logistic.LogisticRegression(23)_max_iter10000
sklearn.linear_model.logistic.LogisticRegression(23)_multi_class"auto"
sklearn.linear_model.logistic.LogisticRegression(23)_n_jobsnull
sklearn.linear_model.logistic.LogisticRegression(23)_penalty"l2"
sklearn.linear_model.logistic.LogisticRegression(23)_random_state58867
sklearn.linear_model.logistic.LogisticRegression(23)_solver"lbfgs"
sklearn.linear_model.logistic.LogisticRegression(23)_tol0.0001
sklearn.linear_model.logistic.LogisticRegression(23)_verbose0
sklearn.linear_model.logistic.LogisticRegression(23)_warm_startfalse
sklearn.pipeline.C376922b9343792(n19=sklearn.pipeline.C376922b9342794(n20=sklearn.pipeline.C58a8378eb9937(n21=sklearn.compose._column_transformer.C376922b933f458(n22=sklearn.preprocessing._function_transformer.C376922b933ed17)),n23=sklearn.pipeline.C376922b9341b3a(n24=sklearn.compose._column_transformer.C8dd9f27df5f8(n25=sklearn.preprocessing._function_transformer.C376922b93410c0))),n26=fastsklearnfeature.transformations.IdentityTransformation.C58a8378eb9ebf,c=sklearn.linear_model.logistic.LogisticRegression)(1)_memorynull
sklearn.pipeline.C376922b9343792(n19=sklearn.pipeline.C376922b9342794(n20=sklearn.pipeline.C58a8378eb9937(n21=sklearn.compose._column_transformer.C376922b933f458(n22=sklearn.preprocessing._function_transformer.C376922b933ed17)),n23=sklearn.pipeline.C376922b9341b3a(n24=sklearn.compose._column_transformer.C8dd9f27df5f8(n25=sklearn.preprocessing._function_transformer.C376922b93410c0))),n26=fastsklearnfeature.transformations.IdentityTransformation.C58a8378eb9ebf,c=sklearn.linear_model.logistic.LogisticRegression)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "n19", "step_name": "n19"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "n26", "step_name": "n26"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "c", "step_name": "c"}}]
sklearn.pipeline.C376922b9342794(n20=sklearn.pipeline.C58a8378eb9937(n21=sklearn.compose._column_transformer.C376922b933f458(n22=sklearn.preprocessing._function_transformer.C376922b933ed17)),n23=sklearn.pipeline.C376922b9341b3a(n24=sklearn.compose._column_transformer.C8dd9f27df5f8(n25=sklearn.preprocessing._function_transformer.C376922b93410c0)))(1)_n_jobsnull
sklearn.pipeline.C376922b9342794(n20=sklearn.pipeline.C58a8378eb9937(n21=sklearn.compose._column_transformer.C376922b933f458(n22=sklearn.preprocessing._function_transformer.C376922b933ed17)),n23=sklearn.pipeline.C376922b9341b3a(n24=sklearn.compose._column_transformer.C8dd9f27df5f8(n25=sklearn.preprocessing._function_transformer.C376922b93410c0)))(1)_transformer_list[{"oml-python:serialized_object": "component_reference", "value": {"key": "n20", "step_name": "n20"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "n23", "step_name": "n23"}}]
sklearn.pipeline.C376922b9342794(n20=sklearn.pipeline.C58a8378eb9937(n21=sklearn.compose._column_transformer.C376922b933f458(n22=sklearn.preprocessing._function_transformer.C376922b933ed17)),n23=sklearn.pipeline.C376922b9341b3a(n24=sklearn.compose._column_transformer.C8dd9f27df5f8(n25=sklearn.preprocessing._function_transformer.C376922b93410c0)))(1)_transformer_weightsnull
sklearn.pipeline.C58a8378eb9937(n21=sklearn.compose._column_transformer.C376922b933f458(n22=sklearn.preprocessing._function_transformer.C376922b933ed17))(1)_memorynull
sklearn.pipeline.C58a8378eb9937(n21=sklearn.compose._column_transformer.C376922b933f458(n22=sklearn.preprocessing._function_transformer.C376922b933ed17))(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "n21", "step_name": "n21"}}]
sklearn.compose._column_transformer.C376922b933f458(n22=sklearn.preprocessing._function_transformer.C376922b933ed17)(1)_n_jobsnull
sklearn.compose._column_transformer.C376922b933f458(n22=sklearn.preprocessing._function_transformer.C376922b933ed17)(1)_remainder"drop"
sklearn.compose._column_transformer.C376922b933f458(n22=sklearn.preprocessing._function_transformer.C376922b933ed17)(1)_sparse_threshold0.3
sklearn.compose._column_transformer.C376922b933f458(n22=sklearn.preprocessing._function_transformer.C376922b933ed17)(1)_transformer_weightsnull
sklearn.compose._column_transformer.C376922b933f458(n22=sklearn.preprocessing._function_transformer.C376922b933ed17)(1)_transformers[{"oml-python:serialized_object": "component_reference", "value": {"key": "n22", "step_name": "n22", "argument_1": [3]}}]
sklearn.preprocessing._function_transformer.C376922b933ed17(1)_accept_sparsefalse
sklearn.preprocessing._function_transformer.C376922b933ed17(1)_check_inversetrue
sklearn.preprocessing._function_transformer.C376922b933ed17(1)_func{"oml-python:serialized_object": "function", "value": "fastsklearnfeature.candidates.Identity.identity"}
sklearn.preprocessing._function_transformer.C376922b933ed17(1)_inv_kw_argsnull
sklearn.preprocessing._function_transformer.C376922b933ed17(1)_inverse_funcnull
sklearn.preprocessing._function_transformer.C376922b933ed17(1)_kw_argsnull
sklearn.preprocessing._function_transformer.C376922b933ed17(1)_pass_y"deprecated"
sklearn.preprocessing._function_transformer.C376922b933ed17(1)_validatefalse
sklearn.pipeline.C376922b9341b3a(n24=sklearn.compose._column_transformer.C8dd9f27df5f8(n25=sklearn.preprocessing._function_transformer.C376922b93410c0))(1)_memorynull
sklearn.pipeline.C376922b9341b3a(n24=sklearn.compose._column_transformer.C8dd9f27df5f8(n25=sklearn.preprocessing._function_transformer.C376922b93410c0))(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "n24", "step_name": "n24"}}]
sklearn.compose._column_transformer.C8dd9f27df5f8(n25=sklearn.preprocessing._function_transformer.C376922b93410c0)(1)_n_jobsnull
sklearn.compose._column_transformer.C8dd9f27df5f8(n25=sklearn.preprocessing._function_transformer.C376922b93410c0)(1)_remainder"drop"
sklearn.compose._column_transformer.C8dd9f27df5f8(n25=sklearn.preprocessing._function_transformer.C376922b93410c0)(1)_sparse_threshold0.3
sklearn.compose._column_transformer.C8dd9f27df5f8(n25=sklearn.preprocessing._function_transformer.C376922b93410c0)(1)_transformer_weightsnull
sklearn.compose._column_transformer.C8dd9f27df5f8(n25=sklearn.preprocessing._function_transformer.C376922b93410c0)(1)_transformers[{"oml-python:serialized_object": "component_reference", "value": {"key": "n25", "step_name": "n25", "argument_1": [2]}}]
sklearn.preprocessing._function_transformer.C376922b93410c0(1)_accept_sparsefalse
sklearn.preprocessing._function_transformer.C376922b93410c0(1)_check_inversetrue
sklearn.preprocessing._function_transformer.C376922b93410c0(1)_func{"oml-python:serialized_object": "function", "value": "fastsklearnfeature.candidates.Identity.identity"}
sklearn.preprocessing._function_transformer.C376922b93410c0(1)_inv_kw_argsnull
sklearn.preprocessing._function_transformer.C376922b93410c0(1)_inverse_funcnull
sklearn.preprocessing._function_transformer.C376922b93410c0(1)_kw_argsnull
sklearn.preprocessing._function_transformer.C376922b93410c0(1)_pass_y"deprecated"
sklearn.preprocessing._function_transformer.C376922b93410c0(1)_validatefalse
fastsklearnfeature.transformations.IdentityTransformation.C58a8378eb9ebf(1)_number_parent_featuresnull

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

17 Evaluation measures

0.9969 ± 0.0047
Per class
Cross-validation details (10-fold Crossvalidation)
0.9667 ± 0.0355
Per class
Cross-validation details (10-fold Crossvalidation)
0.95 ± 0.0527
Cross-validation details (10-fold Crossvalidation)
0.7054 ± 0.0292
Cross-validation details (10-fold Crossvalidation)
0.1747 ± 0.0148
Cross-validation details (10-fold Crossvalidation)
0.4444
Cross-validation details (10-fold Crossvalidation)
150
Per class
Cross-validation details (10-fold Crossvalidation)
0.9668 ± 0.0293
Per class
Cross-validation details (10-fold Crossvalidation)
0.9667 ± 0.0351
Cross-validation details (10-fold Crossvalidation)
1.585
Cross-validation details (10-fold Crossvalidation)
0.9667 ± 0.0351
Per class
Cross-validation details (10-fold Crossvalidation)
0.393 ± 0.0333
Cross-validation details (10-fold Crossvalidation)
0.4714
Cross-validation details (10-fold Crossvalidation)
0.2324 ± 0.0187
Cross-validation details (10-fold Crossvalidation)
0.4929 ± 0.0397
Cross-validation details (10-fold Crossvalidation)