Run
10228444

Run 10228444

Task 9957 (Supervised Classification) qsar-biodeg Uploaded 06-06-2019 by Felix Neutatz
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • ComplexityDriven openml-python Sklearn_0.20.3.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.C376aa8668317f2(n3=sklearn.pipeline.C376aa86682ff33(n4=skl earn.pipeline.C376aa86682b952(n5=sklearn.compose._column_transformer.C376aa 86682acb9(n6=sklearn.preprocessing._function_transformer.C376aa86682a315)), n7=sklearn.pipeline.C376aa86682efe8(n8=sklearn.compose._column_transformer. C376aa86682dc3a(n9=sklearn.preprocessing._function_transformer.C376aa86682d 691))),n10=fastsklearnfeature.transformations.IdentityTransformation.C376aa 8668311c7,c=sklearn.linear_model.logistic.LogisticRegression)(1)Automatically created scikit-learn flow.
sklearn.linear_model.logistic.LogisticRegression(23)_C10
sklearn.linear_model.logistic.LogisticRegression(23)_class_weight"balanced"
sklearn.linear_model.logistic.LogisticRegression(23)_dualfalse
sklearn.linear_model.logistic.LogisticRegression(23)_fit_intercepttrue
sklearn.linear_model.logistic.LogisticRegression(23)_intercept_scaling1
sklearn.linear_model.logistic.LogisticRegression(23)_max_iter10000
sklearn.linear_model.logistic.LogisticRegression(23)_multi_class"auto"
sklearn.linear_model.logistic.LogisticRegression(23)_n_jobsnull
sklearn.linear_model.logistic.LogisticRegression(23)_penalty"l2"
sklearn.linear_model.logistic.LogisticRegression(23)_random_state23363
sklearn.linear_model.logistic.LogisticRegression(23)_solver"lbfgs"
sklearn.linear_model.logistic.LogisticRegression(23)_tol0.0001
sklearn.linear_model.logistic.LogisticRegression(23)_verbose0
sklearn.linear_model.logistic.LogisticRegression(23)_warm_startfalse
sklearn.pipeline.C376aa8668317f2(n3=sklearn.pipeline.C376aa86682ff33(n4=sklearn.pipeline.C376aa86682b952(n5=sklearn.compose._column_transformer.C376aa86682acb9(n6=sklearn.preprocessing._function_transformer.C376aa86682a315)),n7=sklearn.pipeline.C376aa86682efe8(n8=sklearn.compose._column_transformer.C376aa86682dc3a(n9=sklearn.preprocessing._function_transformer.C376aa86682d691))),n10=fastsklearnfeature.transformations.IdentityTransformation.C376aa8668311c7,c=sklearn.linear_model.logistic.LogisticRegression)(1)_memorynull
sklearn.pipeline.C376aa8668317f2(n3=sklearn.pipeline.C376aa86682ff33(n4=sklearn.pipeline.C376aa86682b952(n5=sklearn.compose._column_transformer.C376aa86682acb9(n6=sklearn.preprocessing._function_transformer.C376aa86682a315)),n7=sklearn.pipeline.C376aa86682efe8(n8=sklearn.compose._column_transformer.C376aa86682dc3a(n9=sklearn.preprocessing._function_transformer.C376aa86682d691))),n10=fastsklearnfeature.transformations.IdentityTransformation.C376aa8668311c7,c=sklearn.linear_model.logistic.LogisticRegression)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "n3", "step_name": "n3"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "n10", "step_name": "n10"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "c", "step_name": "c"}}]
sklearn.pipeline.C376aa86682ff33(n4=sklearn.pipeline.C376aa86682b952(n5=sklearn.compose._column_transformer.C376aa86682acb9(n6=sklearn.preprocessing._function_transformer.C376aa86682a315)),n7=sklearn.pipeline.C376aa86682efe8(n8=sklearn.compose._column_transformer.C376aa86682dc3a(n9=sklearn.preprocessing._function_transformer.C376aa86682d691)))(1)_n_jobsnull
sklearn.pipeline.C376aa86682ff33(n4=sklearn.pipeline.C376aa86682b952(n5=sklearn.compose._column_transformer.C376aa86682acb9(n6=sklearn.preprocessing._function_transformer.C376aa86682a315)),n7=sklearn.pipeline.C376aa86682efe8(n8=sklearn.compose._column_transformer.C376aa86682dc3a(n9=sklearn.preprocessing._function_transformer.C376aa86682d691)))(1)_transformer_list[{"oml-python:serialized_object": "component_reference", "value": {"key": "n4", "step_name": "n4"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "n7", "step_name": "n7"}}]
sklearn.pipeline.C376aa86682ff33(n4=sklearn.pipeline.C376aa86682b952(n5=sklearn.compose._column_transformer.C376aa86682acb9(n6=sklearn.preprocessing._function_transformer.C376aa86682a315)),n7=sklearn.pipeline.C376aa86682efe8(n8=sklearn.compose._column_transformer.C376aa86682dc3a(n9=sklearn.preprocessing._function_transformer.C376aa86682d691)))(1)_transformer_weightsnull
sklearn.pipeline.C376aa86682b952(n5=sklearn.compose._column_transformer.C376aa86682acb9(n6=sklearn.preprocessing._function_transformer.C376aa86682a315))(1)_memorynull
sklearn.pipeline.C376aa86682b952(n5=sklearn.compose._column_transformer.C376aa86682acb9(n6=sklearn.preprocessing._function_transformer.C376aa86682a315))(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "n5", "step_name": "n5"}}]
sklearn.compose._column_transformer.C376aa86682acb9(n6=sklearn.preprocessing._function_transformer.C376aa86682a315)(1)_n_jobsnull
sklearn.compose._column_transformer.C376aa86682acb9(n6=sklearn.preprocessing._function_transformer.C376aa86682a315)(1)_remainder"drop"
sklearn.compose._column_transformer.C376aa86682acb9(n6=sklearn.preprocessing._function_transformer.C376aa86682a315)(1)_sparse_threshold0.3
sklearn.compose._column_transformer.C376aa86682acb9(n6=sklearn.preprocessing._function_transformer.C376aa86682a315)(1)_transformer_weightsnull
sklearn.compose._column_transformer.C376aa86682acb9(n6=sklearn.preprocessing._function_transformer.C376aa86682a315)(1)_transformers[{"oml-python:serialized_object": "component_reference", "value": {"key": "n6", "step_name": "n6", "argument_1": [9]}}]
sklearn.preprocessing._function_transformer.C376aa86682a315(1)_accept_sparsefalse
sklearn.preprocessing._function_transformer.C376aa86682a315(1)_check_inversetrue
sklearn.preprocessing._function_transformer.C376aa86682a315(1)_func{"oml-python:serialized_object": "function", "value": "fastsklearnfeature.candidates.Identity.identity"}
sklearn.preprocessing._function_transformer.C376aa86682a315(1)_inv_kw_argsnull
sklearn.preprocessing._function_transformer.C376aa86682a315(1)_inverse_funcnull
sklearn.preprocessing._function_transformer.C376aa86682a315(1)_kw_argsnull
sklearn.preprocessing._function_transformer.C376aa86682a315(1)_pass_y"deprecated"
sklearn.preprocessing._function_transformer.C376aa86682a315(1)_validatefalse
sklearn.pipeline.C376aa86682efe8(n8=sklearn.compose._column_transformer.C376aa86682dc3a(n9=sklearn.preprocessing._function_transformer.C376aa86682d691))(1)_memorynull
sklearn.pipeline.C376aa86682efe8(n8=sklearn.compose._column_transformer.C376aa86682dc3a(n9=sklearn.preprocessing._function_transformer.C376aa86682d691))(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "n8", "step_name": "n8"}}]
sklearn.compose._column_transformer.C376aa86682dc3a(n9=sklearn.preprocessing._function_transformer.C376aa86682d691)(1)_n_jobsnull
sklearn.compose._column_transformer.C376aa86682dc3a(n9=sklearn.preprocessing._function_transformer.C376aa86682d691)(1)_remainder"drop"
sklearn.compose._column_transformer.C376aa86682dc3a(n9=sklearn.preprocessing._function_transformer.C376aa86682d691)(1)_sparse_threshold0.3
sklearn.compose._column_transformer.C376aa86682dc3a(n9=sklearn.preprocessing._function_transformer.C376aa86682d691)(1)_transformer_weightsnull
sklearn.compose._column_transformer.C376aa86682dc3a(n9=sklearn.preprocessing._function_transformer.C376aa86682d691)(1)_transformers[{"oml-python:serialized_object": "component_reference", "value": {"key": "n9", "step_name": "n9", "argument_1": [38]}}]
sklearn.preprocessing._function_transformer.C376aa86682d691(1)_accept_sparsefalse
sklearn.preprocessing._function_transformer.C376aa86682d691(1)_check_inversetrue
sklearn.preprocessing._function_transformer.C376aa86682d691(1)_func{"oml-python:serialized_object": "function", "value": "fastsklearnfeature.candidates.Identity.identity"}
sklearn.preprocessing._function_transformer.C376aa86682d691(1)_inv_kw_argsnull
sklearn.preprocessing._function_transformer.C376aa86682d691(1)_inverse_funcnull
sklearn.preprocessing._function_transformer.C376aa86682d691(1)_kw_argsnull
sklearn.preprocessing._function_transformer.C376aa86682d691(1)_pass_y"deprecated"
sklearn.preprocessing._function_transformer.C376aa86682d691(1)_validatefalse
fastsklearnfeature.transformations.IdentityTransformation.C376aa8668311c7(1)_number_parent_featuresnull

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

17 Evaluation measures

0.8372 ± 0.0371
Per class
Cross-validation details (10-fold Crossvalidation)
0.7764 ± 0.0335
Per class
Cross-validation details (10-fold Crossvalidation)
0.5174 ± 0.0708
Cross-validation details (10-fold Crossvalidation)
0.2455 ± 0.0498
Cross-validation details (10-fold Crossvalidation)
0.3409 ± 0.0194
Cross-validation details (10-fold Crossvalidation)
0.4472 ± 0.0012
Cross-validation details (10-fold Crossvalidation)
1055
Per class
Cross-validation details (10-fold Crossvalidation)
0.7911 ± 0.0334
Per class
Cross-validation details (10-fold Crossvalidation)
0.7716 ± 0.0342
Cross-validation details (10-fold Crossvalidation)
0.9223 ± 0.0036
Cross-validation details (10-fold Crossvalidation)
0.7716 ± 0.0342
Per class
Cross-validation details (10-fold Crossvalidation)
0.7621 ± 0.0425
Cross-validation details (10-fold Crossvalidation)
0.4728 ± 0.0013
Cross-validation details (10-fold Crossvalidation)
0.4107 ± 0.0205
Cross-validation details (10-fold Crossvalidation)
0.8687 ± 0.0425
Cross-validation details (10-fold Crossvalidation)